Guidelines for Setting Up the Working Environment

Introduction	. 2
WEKEO Workspace	. 3
Creating a WEkEO Account	. 3
Accessing the WEkEO JupyterHub	. 3
Setting up the working environments	. 7
Logging in into your WEKEO user account	. 7
Eumdac_data_store	. 7
Cloning Eumdac_data_store repository to the working environment	. 7
Creating the virtual environment	. 8
NWP and Metar	. 8
Cloning dataplotting repository to the working environment	. 8
Creating the virtual environment	. 9
Satellite Imagery	. 9
Cloning imagery repository to the working environment	10
Creating the virtual environment	10

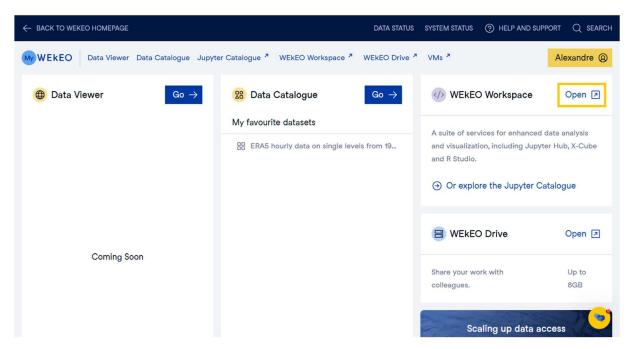
Introduction

In this training, we will use a Jupyter-based environment. To ensure participants can continue accessing and working with the platform beyond the course, we will be using the WEkEO Workspace. The first step is to <u>create a WEkEO account</u>. Next we will be <u>setting up the working environment</u>, by cloning code repositories and creating the necessary virtual environments.

WEKEO Workspace

WEKEO is one of the five Copernicus DIAS (Data and Information Access Services) – a cloud-based platform launched by the European Commission in 2018.

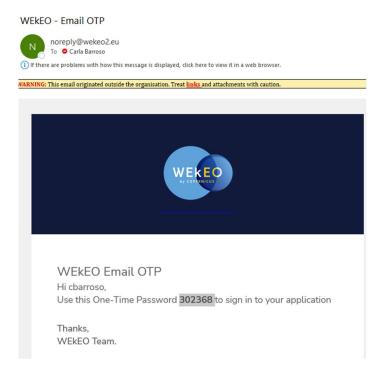
WEkEO offers for all users, the JupyterHub, a development multi-users platform designed to create, run and share Python codes and scripts for data analysis, in virtual Jupyter environments.


Note: in WEkEO each user has 3.5 CPU, 14 GB RAM and 20 GB storage.

Creating a WEkEO Account

Register here: https://wekeo.copernicus.eu/register

Accessing the WEkEO JupyterHub

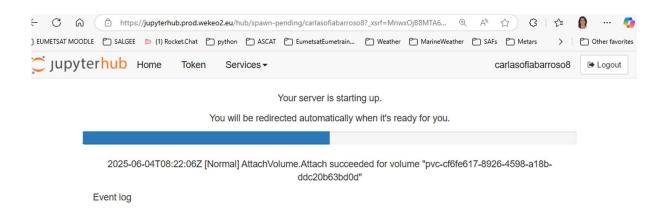

- Sign in to your WEkEO account (https://wekeo.copernicus.eu/my-wekeo)
- From MyWEkEO, click on Open next to WEKEO Workspace:


Please note: You may be prompted to enter a second authentication:

Sign in with OAuth 2.0

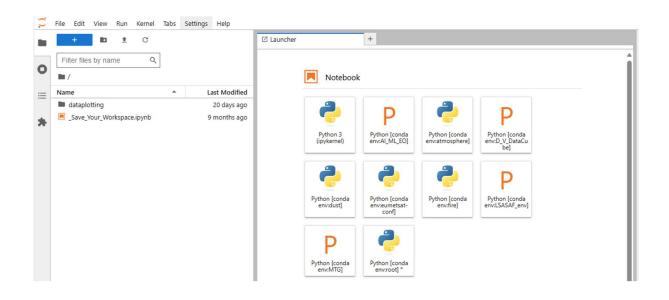
You will receive the authentication code by email. Be sure to check your inbox — it might take a couple of minutes to arrive. The email will look similar to the example shown below:

Enter the one-time password (OTP) manually to complete the sign-in process.
 Copying and pasting the code may not work properly, so it is recommend typing it in directly.



On the following window that opens select Earth Observation Tools:

Server Options



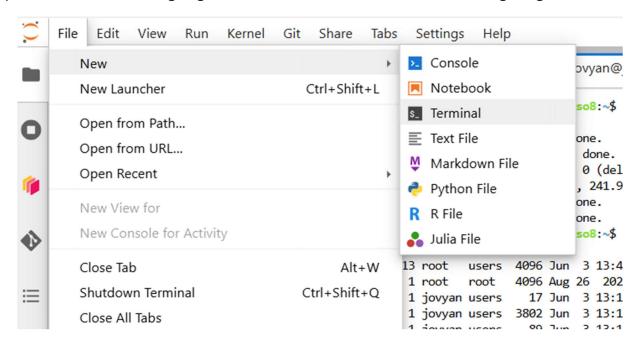
Please note that it may take a few minutes for the server to start. You will be seeing a loading screen like:

(You can find more information on What is the WEkEO JupyterHub? | WEkEO Help Center)

Once loaded, you should be able to access and view the JupyterLab environment successfully. It should resemble the interface shown below, which includes, a file browser on the left displaying available directories and files.

Setting up the working environments

For setting up the working environments we will be first downloading code packages from git repositories. We will be doing this for three code packages: Eumdac_data_store, dataplotting and imagery.


Logging in into your WEKEO user account

First, log in into your WEKEO user account: https://wekeo.copernicus.eu/my-wekeo or https://jupyterhub.prod.wekeo2.eu/hub/spawn

Eumdac_data_store

Cloning Eumdac_data_store repository to the working environment

Open a terminal window, going to File->New->Terminal, like in the following image:

In the teminal window be sure you are positioned in your home directory:

cd \$HOME

Copy paste the following line to the terminal window and click enter:

git clone --recurse-submodules https://gitlab.eumetsat.int/eumetlab/data-services/eumdac_data_store.git

You should get an output like:

Cloning into 'eumdac_data_store'...

remote: Enumerating objects: 525, done.

remote: Counting objects: 100% (316/316), done.

remote: Compressing objects: 100% (198/198), done.

remote: Total 525 (delta 174), reused 192 (delta 109), pack-reused 209 (from 1)

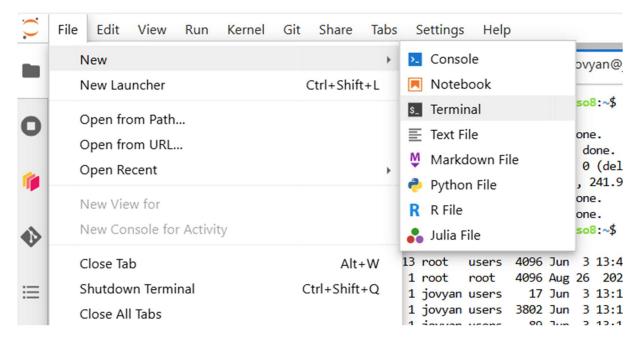
Receiving objects: 100% (525/525), 736.01 MiB | 21.66 MiB/s, done.

Resolving deltas: 100% (286/286), done.

Creating the virtual environment

cd \$HOME/eumdac_data_store/

conda env create -f environment.yml


conda activate eumdac_data_store

python -m ipykernel install --user --name eumdac_data_store

NWP and Metar

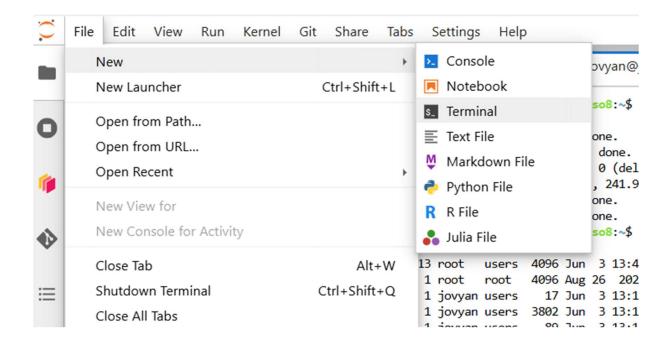
Cloning dataplotting repository to the working environment

Open a terminal window, going to File->New->Terminal, like in the following image:

Next clone the repository that contains scripts to display NWP and Metar data, by typing, in the \$HOME directory:

git clone https://github.com/carlabarrosoc/dataplotting.git

You should get an output like:


Cloning into 'dataplotting'...
remote: Enumerating objects: 24129, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 24129 (delta 0), reused 0 (delta 0), pack-reused 24128 (from 2)
Receiving objects: 100% (24129/24129), 241.91 MiB | 35.12 MiB/s, done.
Resolving deltas: 100% (2483/2483), done.
Updating files: 100% (24469/24469), done.

Creating the virtual environment

cd \$HOME/dataplotting/
conda env create -f environment.yml

Satellite Imagery

Open a terminal window, going to File->New->Terminal, like in the following image:

Cloning imagery repository to the working environment

Now let's clone the repository that contains scripts to display satellite imagery. Please copy &paste the following commands to the terminal:

cd \$HOME

And then clone the repository:

git clone https://github.com/carlabarrosoc/imagery.git

You should get an output like:

Cloning into 'imagery'...

remote: Enumerating objects: 29, done.

remote: Counting objects: 100% (29/29), done.

remote: Compressing objects: 100% (22/22), done.

remote: Total 29 (delta 5), reused 29 (delta 5), pack-reused 0 (from 0)

Receiving objects: 100% (29/29), 40.80 KiB | 1.20 MiB/s, done.

Resolving deltas: 100% (5/5), done.

Creating the virtual environment

cd \$HOME/imagery/

conda env create -f environment.yml

After all these steps, you should see three folders in your file tree:

- eumdac_data_store/
- dataplotting/
- imagery/