KING'S College LONDON University of London

LSA SAF Fire Radiative Power Product

Martin J. Wooster, Weidong Xu, Gareth Roberts, Johannes kaiser and Jiangping He

SALGEE workshop 1 Sept 2015

Biomass Burning Impacts

- Fires play an important role in the natural equilibrium climate, and that perturbed by humans.
- They need to be considered in future climate projections (Ward et al., 2012)
- And also in UNFCC Sponsored REDD+ Programmes.

Fire contribution (warming)
Fire contribution (cooling)
Total contribution (warming)
Total contribution (cooling)

Monday 8 July 2013 00UTC MACC-II Forecast t+000 VT: Monday 8 July 2013 00UTC 500 mb Carbon Monoxide [ppbv]

MODIS Burned Area Mapping

MODIS True Colour Image Pair 17th & 24th Oct 2001

MODIS True ColourMODIS BurnedTimeseriesArea Timeseries

MODIS Burned Area Mapping

MODIS True Colour Image Pair 17th & 24th Oct 2001 MODIS Thermal Band 24th Oct 2001

MODIS 1 km Fire Observations

True Colour Composite

Middle IR Wavelength (3.96 μm)

Basic Physics of Active Fire Detection

Planck Radiation Law

$$L(\},T) = \frac{C_1}{\frac{C_2}{F}}$$

I wavelength (m) T temperature (K) L spectral radiance (Wm⁻² sr⁻¹m⁻¹) $C_1 = 2\pi hc^2$ W.m² $C_2 = hc/k$ m.K

National Centre fo Earth Observation

Thermal emission peaks in the MIR (3-5 μ m) region for fire temperatures ranging from ~ 650 K (weak smouldering) to ~ 1400 K (strong flaming).

Radiative Transfer of Active Fire Detection

Global Fires from MODIS

- 1 km resolution very sensitive to fires with ~ 4 passes per day.
- Global database useful for evaluation of other products.
- Fires temporally variable diurnal cycle so geostationary very useful.

Burned Area (Reflectance)

Hotspot Map (Thermal)

Burned Area (Reflectance)

Hotspot Map (Thermal)

Global Burned Area & "Small Fire" Problem

Randerson et al., (2012)

Fuel Consumption Estimation

- Plants store 0.02% of solar energy across Earth 10²¹ J yr⁻¹.
- Release ~ 20 kJ kg⁻¹ when they burn.
- Much as thermal radiation.

```
Fuel Burned = BA x FL x CC
Fuel Burned = ΣFRP x CF
```

Where FRP = Fire Radiative Power (Watts) Σ FRP = Fire Radiative Energy (Joules) CF = Consumption Factor (J kg⁻¹) [amount of energy radiated per kg]

Testing $\Sigma FRP \rightarrow$ Fuel Consumption

🔣 📰 FRP (line) and Stefan's Law (stars) Power - 0 × 8×10° **Fire Radiative** 6×10⁸ **Power Time Series** (м) чажод [Watts] (c) T = 31s388.2°C 2×10⁸ Fire Radiative Energy 100 400 200 300 500 Û <202.7°C time(s)

Fuel Consumption Estimation

- Plants store 0.02% of solar energy across Earth 10²¹ J yr⁻¹.
- Release ~ 20 kJ kg⁻¹ when they burn.
- Much as thermal radiation.

SEVIRI FULL DISK

KING'S College LONDON University of London

LSA SAF Fire Radiative Power Product - Part 2

Martin J. Wooster, Weidong Xu, Gareth Roberts, Daniel Fisher and Jiangping He

SALGEE workshop 1 Sept 2015

LSA SAF FRP Products from Meteosat SEVIRI

SEVIRI MWIR Band (5 mins)

Operational SEVIRI FRP-PIXEL Product

Outside Region Not Potential Fire Pixel (PFP) Detected Fire Pixel Saturated Fire Pixel Cloud Sunglint Warm Surface Invalid Background Window PFP Not Confired by Background Cloud / Water Body Edge Bad Data Not Processed (e.g. Water)

Delivered operationally (high timeliness and high reliability) as part of EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF).

Product includes atmospheric correction and per-pixel FRP uncertainty analysis.

FRP-PIXEL LIST & Quality Products

NAME	VALUE	CLASS	REASON
FRP_OUTSIDE_ROIS	-1	FRP NOT Estimated	Pixels that are in the LSA SAF regions (Euro, NAfr, SAfr, SAme) but not in the internal windows considered for processing
FRP_APL_NOTPOT	0	FRP NOT Estimated	Not classed as a potential fire pixel (see Section 3.2).
FRP_APL_FRP	1	FRP Estimated	Successful active fire pixel detection confirmed, with FRP estimation derived from unsaturated 3.9 µm signal.
FRP APL FRP SAT	2	FRP Estimated (but saturated IR3.9 pixel)	Successful active fire pixel detection confirmed, with FRP estimation derived with a saturated 3.9 µm

LSA SAF FRP Grid Product

SEVIRI – FRP-Pixel Fire Diurnal Cycle

LSA SAF FRP Product Mean FRP

Comparison to MODIS Active Fires

SEVIRI & MODIS Fire Observations

SEVIRI MWIR Band

MODIS MWIR Band

SEVIRI FRP-Pixel and MODIS Fire Detects

Fire Pixel "Cluster" FRP Comparison (FRP-PIXEL vs. MODIS)

Slopes: 0.88-0.97 r²: 0.81-0.96 Scatter: 79.9-95.9 RMSD: 87.4-96.1

Conclusion

When SEVIRI and MODIS detect the same fires, the retrieved FRP shows excellent agreement in all four LSA SAF regions.

KCL VS MODIS: 0.91

onal Centre fo

MODIS Active Fire Pixels in MODIS Swath
 × SEVIRI FRP-PIXEL Detections at Same Time & Within Same "Swath"

Regional Scale FRP Comparison (FRP-PIXEL vs. MODIS)

Conclusion

When SEVIRI and MODIS observe the same region, the FRP-PIXEL product tends underestimate to regional-scale total FRP, due to missing "small fire" which can be detected by MODIS.

FRP Frequency Distribution

National Centre fo Earth Observation

SEVIRI NWC-SAF Cloud Mask

SEVIRI Level 1.0 to Level 1.5 Fire Observation

SEVIRI Level 1.0 vs. Level 1.5 Fires

LSA SAF African Fire Radiative Power

Comparison to other SEVIRI Active Fire Products available "operationally"

FRP-Pixel: Comparison to Alternative SEVIRI Active Fire Products – 21 Aug 2014

Fire Diurnal Cycle of SEVIRI Active Fire Products

Active Fire Detection Performance : SEVIRI Fire Products *vs.* MODIS 1 Month Active Fire Error of Omission National Centre fe

Active Fire Detection Performance : SEVIRI Fire Products vs. MODIS **1** Month Active Fire Error of Commission

tional Centre

Active Fire Detection Commission Error Mapping

~28% (1247 4415 of pixels) of false detections in FRP-Pixel Product from heated "solar warm slopes" in Angola.

Igh

- Caused by Alg. "Spatial filter" using static minimum threshold to save processing time.
- Reduces to < 10% using dynamic spatial filter (mean of all clear pixels).

Use of SEVIRI FRP-Pixel Product

Southern African 7-Days FRP

Example Wildfire - July '09 Spain

Fire expanded & burned initially exactly matching News reports. Fire flared again on 23rd July, as illustrated in FRP-PIXEL product.

2007 Greek Fires

August 2007 Greek Fires Copernicus Atmosphere Service

23 August 2007 01:00

MODIS - 26th Aug (09:35 UTC)

Modeling performed under EU MACC Project Courtesy by Morcrette, J., Jones, L, Benedetti, A. and Kaiser, J

Observed