Reading, tweaking and using R commands
Draft: 18/02/2019

) N 131 o o 1¥ ot o Yo SRS 1
2) Looking at commands and tweaking tThemcoocciiiiii i 1
3) Examining and Using the [0g file......c..uviiiii i 7
4) The data book and other R 0DJECESccocuiiiiiiiie et are e 9
5) Using R-Instat’s calculator: a “halfway” dialogue...........coooieiiiiiiiiiciee e 11
6) RUNNING A SIMPIE R SCIIPT.cciiiiiiieiiiiiiiiee et e et e e e e e e st a e e e e e e s rnabaeeeesesnnsbaeeeaeans 15
7) Discussion on running this type of R-SCHPt.......ceicciii i 17
8) Putting data into an R-Instat data bOOKeeeviiiiiiiiiiii e 17
9) Example: Adding a new graph to R-INStateeiiiiiiiiiiiie e 19

1) Introduction

R is a very popular statistical language. R-Instat provides a simple way of using part of R without
having to write R commands.

With many languages, including R, it is easier to read than to write. Being able to read some R is
useful. It also opens the door to being able to adapt, (or tweak!) the R commands. Then you may
quickly be able to use R commands that others have written.

Reading, adapting and using R commands may be enough for some people. For others it may help

them as they also then learn to write.

2) Looking at commands and tweaking them

We use the same data and part of the analysis from the first R-Instat tutorial. This time we also read
and examine some of the R commands that have been produced.

** Go to File > Open From Library.
** Click on the From Package dropdown and choose ggplot2.
** Choose the first example data called diamonds.

** Press Ok.

Then one our first actions in the tutorial was to look at all the data, Fig. 1.

Fig. 1 The diamonds data

carat color (o.f)| clarity (o.f) depth table price X y ~
1 p23 Jdeas E s2 615 S50 326 395 398 243
2 021 Premium E sh 598 610 326 389 384 231
3 023 Good E VS1 569 650 327 405 407 231
4 029 Premium | Vs2 624 530 334 420 423 263
5 031 Good J SI2 633 580 335 434 435 275
6 024 VeryGood J VWS2 628 570 336 394 39 248
7 024 VeryGood | VWS1 623 570 336 395 398 247
8 026 VeryGood H sh 619 550 337 407 411 253
8 022 Fair E Vs2 651 610 337 387 378 249
10 023 VeryGood H VS1 594 610 338 400 405 239
1 030 Good J Sh 640 550 339 425 428 273
12023 Ideal J VS1 628 560 340 393 390 246
13 022 Premium F sh 604 610 342 388 384 233
14031 Ideal J SI2 622 540 344 435 437 27
5 020 Premium E SI2 602 620 345 379 375 227
1 032 Premium E) 609 580 345 438 442 268
17 030 Ideal I SI2 620 540 348 431 434 2868
18 030 Good J sh 634 540 351 423 429 270
19 N30 Good J S1 A3B HRRO 3A1 4793 496 o271 Y
4 » | diamonds : €
Showing 1000 of 53940 rows | Showing 10 of 10 columns

There are 10 columns, or variables, and 53 thousand rows. The grid in Fig. 1 shows a window onto

the first 1000 rows.

Fig. 2 Viewing all the data Fig. 3 The R viewer

18 030 Good S carat |cut color |clarity |depth |table |price z
19 030 Good sl 53922 [0.70 |Very Good|E vs2 62.8 |60.0 2755 | 5.59 | 5.65 | 3.53
Wia_ |} 53923 (0.70 |Very Good|D Vsl 63.1 [ss.0 2755 | 5.67 | 5.58 | 3.55
Delete... 53924 [0.73 |Ideal I vs2 61.3 |56.0 2756 | 5.80 | 5.84 | 3.57
— Rlrames: 394(53925 [0.73 |Ideal I vs2 €1.6 |55.0 2756 | 5.82 | 5.84 | 3.59
diamonds 53926 |0.79 |Ideal I 511 61.6 |56.0 2756 | 5.95 | 5.97 | 3.67
[r—1 Hide 53927 [0.71 |[Ideal E SI1 €1.9 |56.0 2756 | 5.71 | 5.73 | 3.54
Unhide... 53928 (0.79 |Good F 511 58.1 |59.0 2756 | €.06 | €.13 | 3.54
53929 [0.79 |Premium |E 512 €1.4 |58.0 275¢ | €.03 | 5.96 | 3.68
Copy.. 53930 [0.71 |Ideal G Vs1 61.4 |56.0 2756 | 5.76 | 5.73 | 3.53
Reorder... 53931 [0.71 |Premium |E SI1 €0.5 |55.0 2756 | 5.79 | 5.74 | 3.49
View Dobs Frarmie 53932 (0.71 |Premium |F SI1 59.8 |62.0 2756 | 5.74 | 5.73 | 3.43
53933 [0.70 |Very Good|E vs2 €0.5 |59.0 2757 | 5.71 | 5.76 | 3.47
53934 (0.70 |Very Good|E vs2 €1.2 |59.0 2757 | 5.69 | 5.72 | 3.48
53935 [0.72 |Premium |D SI1 62.7 |59.0 2757 | 5.69 | 5.73 | 3.58
53936 (0.72 |Ideal D 511 60.8 [57.0 2757 | 5.75 | 5.76 | 3.50
53937 [0.72 |[Good D SI1 €3.1 |55.0 2757 | 5.69 | 5.75 | 3.61
53938 [0.70 |Very Good|D SI1 62.8 |60.0 2757 | 5.66 | 5.68 | 3.56
53939 [0.86 |Premium |H SI2 €1.0 |58.0 2757 | 6.15 | 6.12 | 3.74
53940 [0.75 [Ideal D 512 €2.2 |55.0 2757 | 5.83 | 5.87 | 3.64

** To see all the data, right-click on the bottom tab, and choose the last option, Fig. 2. This opens
the R-viewer and you can scroll to see all 53 thousand rows of data, Fig. 3.

Fig. 4 shows the output window. R-Instat has issued 2 commands so far. The first was to open the
file from the library and the second was to call the R Viewer. The viewer was called through R-Instat
issuing the R View command:

View(title="diamonds", x=data_book$get_data_frame(data_name="diamonds"))

Fig. 4 The R commands so far Fig. 5 The Summarise menu

One Variable Summarise n
Code generated by the dialog. Open Dataset from Library
utils::data(package="ggplot2". X=diamonds) Deata Frame:
diamonds <- diamonds :
InstatDataObjectSimport_data(data_tables=list(diamonds=d ds)) diamonds B Vaobloks) o Smmarae:
rm(diamonds) Variables o
Right Click Menu: View R Data Frame carat
View(title="diamonds". x=InstatDataObjectSget_data_frame(data_name="diamonds")) cut Add
color
clarity v
depth Data
table v | | Options

Maximum Factor Levels Shown] 3 5

[] Omit Missing Values

Comment: |Code generated by the dialog, One Variable Summarise ’

Ok Reset Close Help To Script

This used the R command called View. This R command provides a spreadsheet-style data viewer. It
has just 2 arguments, the main one is x, which dictates what is viewed. In our case it is the diamonds
data frame. The second is a title for the dataset.

Now use a dialogue:

** Go to Describe > One Variable > Summarise.

** Right-click in the data selector and choose the option to Add all Variables.
** Change the Maximum Factor Levels to 3, Fig. 5.

** Press OK to give the results shown in Fig. 6.

The results, and the R command, is also shown in the output window. This dialogue has used the
summary command.

The results show that the change to 3 of the number of factor levels was not a good one. We don’t
now see enough of the details of the 3 factor columns.

** Return to this last dialogue, i.e. to the dialogue in Fig. 5.
** Click on the To Script button at the bottom of the dialogue.

This has opened a new Script window, Fig 7, and typed a copy of the summary command into this
window.

Fig. 6 Initial results from the summary Fig. 7 The script window

2 Code generated by the dialog. One Vanable Summanse

U y{obj DataOf _columns_from_data(data_name="diamonds", col_names=c
(“carat”,"cut”, "color”, "clarity”."depth", "table". "price”, "2")). na.rmm=FALSE, maxsum=3)

~

mes=c("carat”,"cut","color","clartty”,"depth” "table” "price”,"x""y"."z")). na m:FALSEFaxsumﬂm I
v

** Change the 3 in the R command to 10 and then click on the Run All button at the top of this
window, Fig. 7.

The result, in Fig. 8, is better.

This change in an R command, is what we call “tweaking” the command. You may not understand

everything in the R command in Fig. 7. But it is still easy to see the number 3 in the summary
command and to make the change.

** Now Right-Click in the script window to give the popup menu shown in Fig. 9.
** Choose the bottom option, Clear Script.

** It will check if you really mean this. Click Yes.

Fig. 8 Result after making the change

Fig. 9 Clearing the script window

Code run from Script Window
summary(object-InstalDataObJenget columns from name="di

Tools

View Help

("carat”,"cut”,"color”,"clarity”."depth”,"table”. "price","x","y"."2")). na.rm=FALSH maxsdm=1_0] I

o
)
OCwmn oo

EE E

226 Cut Ctrl+X
e Median : 221 Copy Ctrl+C 'carat”,"cut”,"color”,"!
ea Mean 3933
3 3rd Qu.: Paste Ctrl+V
Max :95.0 Max.
Undo Ctrl+Z
Run Selected Text y =
Run All Text 398 243
Open Script as File 384 231
Load Script from File... 407 231
ve Script... 423 263
| | Clearscript | | 435 275

** Now press the curly arrow, Fig. 9 or use View > Reset to Default Layout, Fig. 10. to return to the

default layout of the windows. This closes the script window.

You could have made this change, from 3 to 10, more simply in the dialogue, Fig. 5. The next
example shows a larger change to an R command.

Fig. 10 Fig. 11
View ‘I Help Correlation =
Output Window Data Frame:
Log Window damends = Varibles:
Script Window Numerics i
Column Metadata depth
table Add
Data Frame Metadata price y
z
Climatic Menu Data
Options
Procurement Menu
i Method Missing
Options by Context Menu
2 y @ Peason (O Kendall (O Speaman (® Complete rowsonly (O Paiwise
I Reset to Default Layout I
[Result Name I Options I
Comment: ‘Cade generated by the dialog, Comelation]
Ok Reset Close Help To Script

The first tutorial showed some correlations for these data, as follows.

** Go to the Describe > Multivariate > Correlations dialog. (Note that only the numeric columns are

visible for this dialog.)

** Select the Multiple Columns button at the top of the dialogue, Fig. 11.
** Select the first 2 variables (Carat and Depth) and the last two (y and z), Fig. 11.

** Click on the Options button to go to the sub-dialogue.

** Select the Pairwise Plot. Then press Return.
** Press Ok to give the results in Fig. 12 and Fig. 13.

Fig. 12 Correlations with R commands Fig. 13 The pairs plot
carat depin , -
Code generated by the dialog, Correlation _
last_model <- cor(x=InstatDataObjectSget_columns_from_data(data_name="diamonds". 15-

col_names=c("carat"."depth”,"y"."2")). use="complete.obs") 10- Cor Corr. Corr
InstatDataObjectSadd_model(data_name="diamonds”, model=last_model. g S ca

model_name="last_model") 05- J.Uz0s 0.952
InstatDataObjectSget_models(model_name="last_model", data_name="diamonds")

jeles

@~ ®
S 3 S 3
.
3.
B
3
-

-

.
=]
&3

udap

diamonds <- InstatDataObjectSget_data_frame(data_name="diamonds", remove_att=TRUE) - -
last_graph <- GGally::ggpairs(data=diamonds, columns=c("carat”,"depth"."y"."z"). upper=list

60 -
(continuous=GGally: wrap(‘points)). lower=list(continuous=GGally-wrap(points’))) o0 T q
InstatDataObjectSadd_graph(data_name="diamonds", graph=last_graph, 40-
graph_name="last_graph") ol | 5 Corr -
InstatDataObjectSget_graphs(graph_name="last_graph”, data_name="diamonds") 20 Vo)
-
el el 5 ¢ 0 K a1 = * =
. . .

m*—- - ighe- f -

0123 5 50 60 70 °UU 20 40 600 10 20 30

The Output window, Fig. 12, shows this dialogue has produced two sets of R commands. The first
gave the correlations and the second gave the graph.

** Return to the last dialogue® and press the To Script button.

This is a general feature in R-Instat: Every dialogue has a To Script button

The To Script button puts a copy of the commands into the script window.

The command for the graph is ggpairs. It is from the R package called GGally, so the command in
Fig. 12 and Fig. 14 is given as GGally::ggpairs.

Fig. 14 Tweaking the ggpairs command Fig. 15 Running the selected commands

Code generated by the dialog, Comelation # Code generated by the dialog, Comelation
i last_model <- corfx=instatDataObject Sget_columns_from_data(data_name="diamonds". col_names=c("cara c c
|last_model <- corf§=InstatDataObjectSget_columns_from_data(data_name="di nstat DataObject Sadd_model(data_name="diamonds", model=last_model, model_name="last_model") Copy c
nstat;ata;;Jectgdd_model‘data_name="d|amonds". model=last_model, moq ~ "*aDataObiectset_modelsimodel_name="last_model”. deta_name="damonds’) Paste c
Instat DataObject Sget_models(model_name="last_model", data_name="diamo Undo c
diamonds <- InstatDataObject Sget_data_frame(data_name="diamonds", remoy Run Selected Text
last_graph <- GGally::ggpairs({flata=diamonds, columns=¢("cut","color","carat” Run Al Text

In contrast, the correlation command, cor, which is from the R stats package is given simply as cor,
i.e. not as stats::cor. That's because the stats package is produced by the core R team. It is loaded
and available whenever R (or R-Instat) is loaded. Other packages are only loaded by R-Instat when
they are needed. So the package name in GGally::ggpairs includes the name of the R package.

Now we “tweak” the ggpairs command. The correlations dialogue in R-Instat is restricted to numeric
columns, but the GGally::ggpairs command also provides interesting graphs for factor columns.

** Change the set of columns by adding two factor columns cut and color to the command, Fig. 14.
** Do this very carefully, so it now reads ... columns=c(“cut”,”color”,"carat","depth","y","z").

** Now select the R commands for the graph as shown in Fig. 15, right-click and choose Run
Selected Text, Fig. 15.

You should now get the results as shown in Fig. 16.

1 You can choose Describe > Multivariate > Correlations again, but the toolbar has a shortcut to recall the last
dialogue, or any of the last 10 dialogues used.

Fig. 16 ggpairs for factors and numeric variables Fig. 17 An error in the variable name

cut color carat depth y z Error running R command(s) X
20000~ It - - -
15000 - - - '3 L4 b -
10000 - II ————— = -_ll = 1 $ ec @ Error in fix_column_values(data, columns, columnLabels,
5000- —— ([} “columns’, “columnlabaledl.
o-=H == A W Maatian R Columns in ‘columns] not found in data: ¢ Cut'} Choices:
s —_ . :. -. T "l: .. (carat’, "cut’, "color’, "clarity’, "depth’, 'table’, 'price’, X, 'y, 'Z)
- 1 - °
= = . m § The error occurred in attempting to run the following R
—— M e command(s):
= temp_val <- capture.output(ast_graph <-
a- |- ~— N - GGally::ggpairs(data=diamonds,
3- Lo Lo O o columns=c("Cut’,"color’,"carat’,"depth”,"y","z’),
f: i L L LLILL i 0.0282 0.952 09 — lower=list{continuous=GGally::wrap(points’})))
- ' 1Y i -
0-
80- -~
70- or| onr e
EU J 0.0293 00949 5
- .
- L

A

60 -
40- N 3 h
-‘g:-vrrr rErErr| r".’.

nte e e oufge g o ° L

HEEEERON00RRID 12 345 506070800 2040600 102030

If you made a mistake in the typing, then try correcting it. If not, then we now make deliberate
mistakes and run the one line again to see the error messages. If you are going to use a script file, or
R commands in any way, then (unless you never make mistakes!) you need to be able to read error
messages.

** Return to the script window and change cut to Cut, i.e. put the C as a capital letter.
** While you are still on this line, right-click again and use Run Current Line.

The error message is in Fig. 17. R no longer recognises the column name. It also provides you with a
list of the names it does recognise, to help with the correction.
** Return to the script file and correct the mistake in the name.

** Now make another mistake, by omitting a comma, i.e. change “cut”,”color” to “cut””color”.

** Run the line again.

Fig. 18 Error message when comma missed Fig. 19 And when a quote is missed
Error running R command(s) x> Error running R command(s) *
Status Error for .temp_val <- capture.output(last_graph <- Status Error for .temp_val <- capture.output(last_graph <-
GGally::ggpairs(data=diamonds, GGally::ggpairs(data=diamonds,
columns=¢("cut™ color’,"carat’,"depth”,’y"," 2], columns=c¢(cut,"color’,"carat”, "depth’,y",’z7),
Qwer= antinugus=GGallv::wrap(points')))) gwer=listicontinuous=GGally::wrap(points’)j)
@ error occurred in attempting to run the following R € error occurred in attempting to run the following R
command(s): command(s):
temp_val <- capture.output(last_graph <- Ztemp_val <- capture.output(last_graph <-
GGally::ggpairs(data=diamonds, GGally:ggpairs(data=diamonds,
columns=¢("cut™ color’,"carat’,"depth”,"y","2), columns=c¢("cut,"color”,"carat”,"depth”,"y","z"),
lower=list{continuous=GGally:wrap(points’)))) lower=list(continuous=GGally:wrap(points’))))

The error message is shown in Fig. 18.
** Correct this error, but now miss out a quote (“) symbol, i.e. it is now “cut,”color”.
** Run the line again to give the error message in Fig 19.

These messages are sensible, though that is not always the case. If you use commands, then you will
have to get used to looking at error messages and using them to help make corrections.

** Click on the curly arrow in the toolbar (Fig. 9) to return to the default window positions.

3) Examining and using the log file

The log file keeps a record of all the R commands in an R-Instat session.

** Click the scroll symbol on the toolbar, to open the log window.

We also show a second method of opening the log window.

** Go to the View menu, as shown in Fig. 10 in Section 2. There is a tick beside the Log Window,
signifying it is open. Click to close the Log window. This action also closes the View menu.

** Go to the View menu again and click on the Log Window again. We do want it open!

Fig. 1 Right click in the log window

Setng kg e st el o s

Copy (t+C

Run Current Line ~ Ctrl+Enter
Run Selected Ti

Ted CirleAltsT
Run All Ctrl+ Alt+R

el cutfod)
| f—

color o) | clanity (of)

degh

SaveLog k.

Open Log File

Help

L s

Fig. 2 File>Save As>Save Log As

R R-Instat 0.4.26

“File |

Edit Prepare Describe Model Climatic Procurement Of
New Data Frame... Ctrl«+N = E) ‘ o
U=~ ‘ H

Open From File... Ctrl+O BE [_E N | » H

Open From Library...

pnd loading R packages
=t 0.4.26/static/InstatObject/R"™)

Import from ODK...

Import from CS

Import from Dat

Open NetCDF... jefficients

Convert

Sove.. cu-s TRV
Save As > Save Data As...

Export > Save Output Window As...

Print Ctrl«P Save Log As...

Print Preview..

Save Script Window As...

The log file is a record of all the commands in an R-Instat session. As such you may want to save this
file. This is either through the right-click menu, Fig. 1, or using File > Save As > Save Log As, Fig. 2.

Once you become more skilled in using R you may also sometimes start an analysis in R-Instat and
then continue with RStudio.

If you do not have RStudio installed, then this is just for you to read.

Fig. 3 Fig. 3 Code in Log Window in R-Instat

Log

Fig. 4 New Script in RStudio

m) 7 i
2 Cde generated by the dalog Comsiion

25t model <- corfr=data_bookSget_columns from_dataidata name="damonds”, col names={'cat”,"depth”. 'y "2}, use="complete obs”)

data_bockSadd_modsimodsl pame="Tax mode” model<ast modsl, da nae="Gancnds’)

data_bockSget modelsdata rame="danonds”, modsl rame="ag_nodel)
damords ¢- 63 bookSoet daa frameidta name="damonds”, move_atr=TRUE)

lag gaph ¢ Galy gopanidta=dancnds, cobrssclcat” "duglh” YY) Iomersiscontruous el weap/ports)
i bookSadd] Gashigagh nanesag gaph”, graphist grah, dta namesGancrds’)

data bookSoet_graphsidata name="damonds”, graph namerat gach’)
mist=c{lest model”, et gaph”, "damends”)

£ Code o from Sort Window

damands ¢- g2 bookSget data frameldda name="damonds”, renove_ar=TRUE)

) Ratic
Fle 8t Code WView Plotr Seson Buld Debug FProfie Took Help
¢ -% - HB L) - Adges -
0] Uratied)® Rpackapti adable « 0 Uritlec =0
Sowcecntae O S o +hn Mt
1
fog Lewed = RiSeript 3
Comscle Terminal =0

R 15 free software and comes with ABSOLUTELY NO WARRANTY,
You are wtlcose to redistribute it under certain conditices,
Type “Ticense()’ or “Ticence()' for distribution details.

R s a collaborative project with sany comtributors.
Type “contributors()” for more information and
"citation()" on how to cite & or R packages in publications.

Type “desa()’ for some demos, ‘help()’ for cn-line help, or

** In the log window in R-Instat select from the top to the first comment line that says #Code run
from script window, Fig. 3.

A general feature of R-Instat is that every dialogue has a Comment field. When you use a
dialogue, you may accept the default comment or type your own more meaningful comments.

That makes the log file clearer.

** Right-Click and choose Copy.

** Open RStudio. It will look something like Fig. 4.

** In RStudio use File > New File > RScript, Fig 4.

** In RStudio either use <ctrl> V to paste or use Edit > Paste.

The R-Instat commands are now available in RStudio.

** In RStudio Select the part of this R script up to the View line, Fig. 5 and click on Run.

The resultis in Fig. 6. You can scroll through the data, just as you did earlier in R-Instat.

Fig. 5 R-Instat Code in Rstudio Source Window Fig. 6 Results of the highlighted code
) Rstudio 0 Rotusio
file Edt Code View Plots Session Build Debug Profile Took Help E c*mm m sm B‘"Ig pmm‘w il

-0« 00 & WOEEEE W -

Usamsts o [vshute in: [Qunitess Untiteds* s unit
@« A 8§ Bsuconswe & Brn B Wsoue »

) untitiedt D imputationr @ untitieas - | [l diamonds
- A | T Fitter

* color ¥ darity * depth ¥ table ¥

setwd(dir=":/Progran Files (x86)/AMI/R-Instat 0.4.26/static/Instatobject/R"
e(file="Rsetup.R"

data_book <- Datasooknew

options(digits=4

options(show. signif.stars=F

utils: :datapackage="qgplot2", X-diamonds

dianonds < diamonds

data_bookSimport_datadata_tables=11st dianonds=dianonds

rm(dianonds

Vien(x=data_bookget_data_frame(data_name="dianonds"), title="diamonds"

** Now, still in RStudio, return to the script file.
** Select the rest of the script file, Fig. 7, and run this.
The results are in Fig. 8, just as in R-Instat.

Fig. 7 Remainder of the code Fig. 8 Results

sumaryobject=data_bookSget_coluans_fron_dataldata_nane-"dianonds", col_nanes=C("carat","c

summary object=data_bookSget_columns_fron_datal data_nane="dianonds", col_nanes=C("carat","c

The R commands in the log file provide a record of what you have done. In addition, you can share it
with others.

4) The data book and other R objects

** Now return to R-Instat

** Click on the curly arrow in the toolbar, or use View > Reset to Default Layout to return to the
two default windows.

In R-Instat the data are stored in a data book. We now explain a data book. This is both to help in
using R-Instat and to explain the R commands that are generated.

In R-Instat the data are in data frames. A data frame is roughly what Excel calls a list and many
database packages call a table. Itis a rectangle of columns. Each column has a name and the data in
each column (or variable) is of a single type.

The column type can be numeric, or factor, or logical or date, or character, and so on. If you have a
number column into which there is accidentally a letter o, instead of a zero, then the whole column
will automatically become a character (text) column.

Data frames also have metadata associated with the columns (variables) of data. For example, as
well as a name, each variable can also have a label.

** Use View > Column Metadata (or click on the i symbol in the toolbar).

This shows the metadata currently associated with the diamonds data frame, Fig. 1

Fig. 1 Column Metadata Fig. 2 Prepare>R Objects > View
lﬁ J Prepare ‘ Describe Model. Climatic Procuremg
11
ooy, e | cs | sfiddn | Sietic SonlFiowe | | 2:‘:; . : @~ %
1 learat numeic FALSE FALSE 3
i 1 Column: Calculate > e
2 out ordered.factFALSE ~ FALSE NA Is_Hidden | Scientific
Column: Generate > FALSE FALSE
3 color ordered factFALSE ~ FALSE NA Eolumse Eacior | e S
4 clanty ordered factFALSE ~ FALSE NA Column: Text » EaALsE IFALSE
5 depth numeric FALSE FALSE 3 Column: Date » FALSE FALSE
6 table numeic FALSE FALSE 3 Column: Reshape » FALSE FALSE
= : : FALSE FALSE
/ p[’ice lnteger FALSE FALSE 3 E:Z: :;:’:cl:ks : FALSE FALSE
8 x numeric FALSE FALSE 3 - alee_caicc
: ‘ R Objects > View
Sy numeic FALSE FALSE 3 — .
0, numeic FALSE FALSE 3 aSawm| %
Delete...

** Now use Prepare > R Objects > View, Fig. 2.

This View dialogue is in Fig. 3. It shows there are 2 objects, called last_model and last_graph. They
came from the correlations dialogue that produced both some summaries and a graph.

This is a general feature of R-Instat. Every dialogue that produces a graph includes an option to
save the corresponding object. If not, then the most recent graph is always saved by R-Instat, and
given the name last_graph.

The same is true for all the dialogues that produce a model or summary.

** Select the last_model and the option to print. You now again get the correlation matrix in the
output window.

Fig. 3 View Object Dialog Fig. 4 Column Summaries dialog

. . ! Column Statistics
View Object n Bt i]
| Data Frame:
| diamonds v
! Data Frame: i - Variable(s) to Summarise:
! | diamonds W || Factors | diamonds |
Object to View: [ot carat
! | color Add
|| Objects ast_model ! | clarty
I
i | last_model H L
i _ Print H Data S
last_graph Add © i Options By Factorfe):
O Structure {: - Options diamonds
; o S]
| [Store Results =
! [Original Level
! [Print Resutts to Output
]
| l Summaries l
i X - | [0 Omit Missing Values .
! [Comment: |C0de generated by the dialog, View Object] l Proportions/Percentages
i - l Comment: lCode generated by the dialog, Column Statistics)
‘ Lo = i = L Pl ok Reset Close Help To Script

In R-Instat these objects are also part of the metadata associated with the corresponding data
frame. They form part of the Instat data object. An Instat data sheet is a data frame with (often)
quite a lot of metadata.

We now produce a second, summary data frame

** Go to Prepare > Column: Reshape > Column Summaries.

We choose to summarise a numeric column, carat, by the 2 factors called cut and color.
** Complete the main dialogue as shown in Fig. 4. Then click on the Summaries button.

Fig. 5 Summaries Subdialog Fig. 6 Diamonds Summaries

Summaries n R/ Relnstat 0426
File Edt Prepare Describe Model Chmatic Procurement OptionsbyContet Took View Help

Summaries More Two-Varables Postion Model Missing Options A, e @ ld EE E F O @

Common Data View

D N Non Missing El N Total eutiofl color(of) meancarat | mincaml | mexcart sum_carat A
! Ficp 090 0% 34 180
[N Missing [Mode I 087 0Z 2 w
3 Fae 085 025 258 M
[n_distinct R 6 1 0B 28
5 Pt H 120 08 413 %
All bugt §mordensd) Factor 5 P | %04 3@ 2w
EA Minimum B Maximum T Fair J 133030 sm 160
§ God D oM 02 2 4
[J Range S God E M5 0B 3w 6
0 God F O 0B 261 T
Numeric Gt G 0% 03 2 M
: 2 God H 0915 025 3 62
&4 sum [Median B God | 105 00 3
1 Mean [] standard Deviation ¥ God) 10 0B 3 ko)
Vety Good D 08% 023 25 054
[varance B VeyGod E 06% 02 285 3
7 VeryGood F 0M 0B’ 24 m
Quartiles B VeryGood G 07 0B 2 8
O Lower Guartile [Upper Guartile 9 Ve Good H 09% 0B 30 %N
0 VeryGood | 1M 0M 40 1261
A VeryGood J 18 0M 2 768
2 Premim D 072 oM 25 e
3 Pemim E 078 020 305 w7
2 Pemim F 087 020 3m 1928
B Premum G 081 0B 30 61
% Premim H e 0B 3% Bw
I Pemum | 14 40 1635

Betim Helo L ﬁv’:u:: dy‘wds_h_o;_cms = . = < >

Showing 35 of 35 rows | Showing 6 of 6 columns

diamonis by cut_color

** Complete this sub-dialogue as shown in Fig. 5.
** Press Return to go back to the main dialogue and then Ok.

This has produced a second data frame, Fig. 6. It has 35 rows, because the 2 factors have 5 and 7
levels.

10

This dialogue has also produced more metadata that link these 2 data frames. Further summaries
from the diamonds data that use the same factor then go automatically into the same summary data
frame.

In R-Instat, a data sheet is a single R data frame with the associated meta data. A data book is a
collection of data sheets. Usually it is a set of linked data frames.

The data book is “behind the scenes” in almost all the R-Instat dialogues. R-Instat users gain a lot
from the data book, particularly when the analysis involves more than one data frame. But it does
make the R commands a little harder to read.

With this extra information we explain more about R-Instat’s R commands

** Return to the Describe > Multivariate > Correlations dialogue again.

** Click on the Options button and change the Graphics to None. Press Return.
** Click on the To Script button.

** Click OK to see the output from this dialogue again.

Fig. 7 shows the code from the script window

Fig 7 Script for correlations

Code generated by the dialog, Correlation

1. last_model <- cor(x=data_bookSget_columns_from_data(data_name="diamonds", col_names=c("carat","depth","y","z")),
use="complete.obs")

2. data_book$add_model(model_name="last_model", model=last_model, data_name="diamonds")

3. data_bookSget_models(data_name="diamonds", model_name="last_model")

4. rm(last_model)

Line 1 is important. It runs the cor command on the specified columns of data. The data are from
the relevant data sheet and the part of the command

“data_bookSget_columns_from_data(data_name="diamonds", col_names=c("carat","depth","y","z"))”

has simply taken the 4 columns from the diamonds data frame that is in that data sheet and put
them into a second data frame. The results are not printed, but are put into the last_model object.

Line 2 has added the model into that data sheet.

Line 3 has simply printed the model, i.e. the correlations in this case.

Finally line 4 has removed the diamonds data from R’s memory.

** In the script window make a new line just after line 1 and type (or copy) last_model.

** Select lines 1 and the line 2 that you just typed, right-click and choose Run Selected Text. You
should get the correlation matrix again.

** Even simpler, delete the left-hand-side from the first line, so it starts with cor. Right-click again
and choose Run Current Line.

This shows that getting the result in R, or in RStudio is simpler than in R-Instat. The apparent
complexity in reading R-Instat’s R commands is just that they always retrieve what is needed from
the relevant R-Instat data book at the start and then to update the data book at the end.

There are now two linked data frames, i.e. two data sheets. Together they make up a data book.
5) Using R-Instat’s calculator: a “halfway” dialogue

Most of R-Instat’s dialogues are designed for you to input (File menu), organise (Prepare menu) and
analyse (Describe and Model menu) your data without necessarily knowing any R commands.

11

Each R-Instat dialogue produces one, or more, R commands. The commands are usually included in
the output window. But if you prefer, right-click in the Output window and choose to Hide (Future)
Commands. Then you are not reminded that the R statistical package is behind it all!

In contrast, when you use RStudio, you will use a set of R commands, collected into a script.

A few R-Instat dialogues do not protect you quite so much from R. We call them “halfway”
dialogues. They involve you, with assistance, typing a single R command (or part of a command).
We first introduce the most used halfway command, namely R-Instat’s calculator.

** Go to Prepare > Column: Calculate > Calculations.

Fig. 1 Calculator Fig. 2 Calculator
Calculations n
I
! Expres: 12% v
Bpresson [129 v it
] = Show A
Basic ~| [J Show Arguments N L] Show >
; Basic
| Data Frame: Basic Data Frame : - s ;
dismonds_by_cut_color 7| 8|9 |/ | . domonde. by-ai oo™
[* A P 4 |56 |* A
Variables . : E Variables
v out 1) 2|3 |- o viz2|s3|-
I color Add Clear color Add Clear
mean_carat s 0 0| + mean_carat) 0 O+
min_carat min_carat
max_carat Data max_carat Data
.| sum_carat Options Help sum_carat Help
| [108] Command produced an emor or no output to &splay
[Save Resutt into [] Save Resut into
£4] Comment: :Code generated by the dialog, Calculations Comment: |Code generated by the dialog, Calculations
Ok Reset Close Help To Script Ok Reset Close Help To Script

You appear to have a simple calculator of the sort on your mobile phone.

** Use the keyboard to type 12 * 9.

** Untick Save Result into and press the Try button, Fig. 1.

It says 108, which is not surprising!

** Press Ok and it copies this simple R command into the output window and again says 108.
These halfway dialogues are very powerful — because R is so powerful. But they are also risky!
** Add a zero, so it is 12 * 90 and press Try again.

** Now change the number 0 for the letter 0. It reads 12 * 90. Press Try again, Fig. 2.

It now says this command produced an error — which is true. But Ok is still enabled.

** Press Ok

12

Fig. 3 Error Fig. 4 Choose the Diamonds data frame

Calculations u
H
i
Expression v
v Basic v [Show Arguments
ata Fra Basic
! A non e e e By diamonds v 7 8 9 /
- : 4 5 6 L A
: Variables)
Variables Error running R command(s) X
t | ot ot 1 2 3 -
! color color Add Clear
mean_cal Status Error for .temp_val <- capture.output(12*90) clarty) 0 0 +
= : unexpected symbol depth
min_carat The error occurred in attempting to run the following R
max_card commandis}: table Data
sum_card temp_val <- capture.output(12*90) price v Options Help

[[] Save Resut into

Comment: |Code generated by the dialog, Calculations

Reset Close Help

It gives an error as we knew it would, see Fig. 3! This time it is quite clear, namely there is a symbol
R can’t recognise.

This shows why the halfway dialogues are more dangerous. In most dialogues R-Instat checks that a
sensible set of R commands is generated before enabling the Ok button. But not in these halfway
dialogues.

You can check for yourself, which is why there is also a Try button.

The positive side is partly the power of these halfway dialogues. They can also help by preparing you
gently to write single commands. This can be a useful stepping-stone, to writing scripts later.

We now exploit more of this dialogue.

** Check the diamonds data frame is the active one in the dialogue, i.e. the primary data and not
the summary data, Fig. 4.

** Press the Clear button.

** Click to add the price variable, then the divide, i.e. the / sign and then add the carat variable.
** Check that the formula is sensible by pressing the Try button.

** Check the Save Result into checkbox and give the new column the name pricepc.

** Press Ok

This produced a new column of price per carat in the data frame. It did this by executing the R
command pricepc <- price/carat.

The commands are shown in Fig. 5, where we have again added line numbers.

Fig. 5 R commands from the calculator

1. pricepc <- price/carat
2. data_book$add_columns_to_data(col_data=pricepc, col_name="pricepc", data_name="diamonds")
3. rm(pricepc)

Line 1 does the calculation.

Line 2 puts the new column into the R-Instat data book, and it is then automatically shown in the
data frame, Fig. 6

Line 3 is the usual housekeeping and removes the new column from R’s memory.

13

Fig. 6 pricepc column

Fig. 7 Logical Calculator

R Relnstat 0426
File FEdit Prepare Descibe Model Chimatic Procurement Optionsby Contet Tools View Help
B E EErEJEF5O 0
Data View
of) degth table price x y 2 peicepe

1 615 55.0 32 3% 3% 243 1417

2 59.8 61.0 3% 38 3% 23 1552

3 569 65.0 327 405 407 23 1422

4 624 580 3% 42 43 263 1152

5 633 580 335 4% 43 27 1081

6 628 570 336 3% 3.9% 248 1400

7 623 570 33% 3% 398 247 1400

& 619 55.0 37 407 4n 253 126

E] 65.1 61.0 337 387 3 248 1532

10 584 61.0 338 4.00 405 238 1470

1 64.0 55.0 339 425 428 273 1130

12 628 56.0 340 393 390 246 1478

3 604 61.0 342 388 34 23 1555

1 622 540 o 43 437 2N 1110

5 602 620 5 3 375 227 1725

1 609 580 345 438 442 263 1078

v 620 540 348 43 43 268 1160
634 540 361 423 429 270 1170

" 638 56.0 31 42 42 2n 1170

2 627 590 31 421 42 266 170

il [k L] 351 408 430 27

Calculations

Expression [carat < 1 .
Logical and Symbols] Show Arguments
Daia Frama: Basic Logical and Symbols
damonds v 7|89 |/ < <>
* A -

Vaniables ~ . 5 § |
carat 1023 |- []
ar Add Clear

color o0+ %% | 2% | %%
dady felse | mach
depth Daca

table v || optoss Help isna lsna

Ty I'] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRI|

Save Resutinto | SIENED v

Comment: [Code generated by the dialog. Calculations

Ok Reset Close Help To Scrgt

This last example has started to show a little of R’s power. The command pricepc <- price/carat has
produced a new column with 53 thousand rows.

R has many functions that produce new columns, and hence R-Instat’s calculator has many

keyboards, see Fig. 7. Itis a logical calculator, a maths calculator, and can also manipulate dates and
character columns etc.

Some of these calculations can alternatively also be done with special R-Instat dialogues. For
example, R-instat also has a Prepare > Column: Dates menu to simplify operations with dates.

** Complete the calculation shown in Fig. 7 to add a logical column that indicates whether the
diamonds are less than 1 carat or not.

** Use Prepare > Check Data > One Variable Summarise with this new column to show that 36,438
values in this column are TRUE, i.e. are less than 1 carat.

In the R-Instat tutorial the violin plot showed the variable called table was odd in that almost all the
cases were recorded as whole numbers. The next calculation therefore rounds the column to whole
numbers and then checks how many of the 53 thousand cases were originally recorded with a

decimal place.

** Return to the calculator and use the Clear button, Fig. 8. Change to the Maths keyboard and use

the round key, Fig. 8.

** Use Try to check the formula and save the result in a column called tableO, Fig. 8.

** Press Ok.

We now introduce a more powerful function — even though it isn’t really needed here!

** Return to the calculator and press Clear. Go back to the logical and symbols keyboard, Fig 9,
and press the Show Arguments checkbox.

** Press the ifelse key. See Fig. 9.

14

Fig. 8 Rounding off Fig. 9 ifelse

Caleulations ﬂ Caledations u
Boresson foundietabe, ot Jq Eomsn | feeeetlabesdatie), TRUE FALSE
Maths v 4 Show Arqumerts LogedadSmbos v 1 Sow Aumes
Data Frame Basc Mahs D Frne Basc Logcd and Synbels
danrih v 70 8.191] . st cos acos ceing pi F it G R) ¢ @ > » TRE
Voicis R 4| 5|6 || bg sn an for rad e T O B T) § A
dt 11213 - = lgld | tan dan | tanc | deg ot 1|23 ! [|
ot A x 5
of) Oex
ke 0 0 + ep s signf s oo 0 () ¢ o M which
da“v
Y dhaty
deoth ! fée mach when between
e v ()E::g o [
Heb 2 v | | Optors e 8 ko dgkasd rex
Ty | [[115561655850575755 61 61555661 5462595 54! o [[TETE RE RE T RETE

[Save Resutinto [18bied

0 Save Restite B

[/ Comment: [Code generated by the didlog, Calcuiations o - -
W Commert: |Code generated by the dakg, Cacuiatons
Ok Reset Close Hep To Scrpt
] Rest Qlose Hep ToSoit

** Change the function to ifelse(test=(table==table0), TRUE , FALSE)

** Press Try and put the result into a column called tablediff.

** If Try worked, then press Ok. Otherwise correct the formula.

** Use the One Variable Summarise dialogue again to show there are only 924 cases that are FALSE.

So, the variable called table was given without a decimal on 98% of the rows of data. The table0
variable is therefore probably the more appropriate variable to analyse.

** Finally, a small exercise. Calculate the tablediff variable with a simpler formula than was used
above.?

6) Running a simple R script

R-Instat includes well over 100 R packages. One of these is called agricolae. The instruction guide
for each package is accessible from R-Instat’s help menu.

The instruction guide for the package usually gives an example of how each function works. Many of
these examples use data sets provided by the package and these data sets are available through the
File > Open from Library dialogue in R-Instat. However, some examples use a set of R-commands to
generate and then analyse the data. We consider one such example.

** Go to Help > R-Packages and choose the agricolae package. It will open in a browser — though
you don’t need to be online.

We run an example of an analysis for Balanced Incomplete Blocks (BIBs). Here we are simply
interested in the process of running a simple script file of R commands. The scenario is that you
would like to understand the potential use of this particular function by seeing the results from an
example of the analysis —though that is not our interest here!

** In the agricolae guide go to the examples for the BIB.test command. It is on about page 15. Copy
the first 9 lines of the example, to the line, print(out). Or copy the text from Fig. 1.

2 The ifelse is very powerful, like the IFELSE function in Excel. That’s why we introduced it. But here just doing
table == tableO gives the same answer.

15

Fig. 1 R commands for a BIB analysis from the agricolae package

library(agricolae)

Example Design of Experiments. Robert O. Kuehl. 2nd. Edition. 2001

run<- gl(10,3)

psi<- ¢(250,325,475,250,475,550,325,400,550,400,475,550,325,475,550,250,400,475,250,325,400,250,400,550,250,325,550,325,400,475)
monovinyl<- ¢(16,18,32,19,46,45,26,39,61,21,35,55,19,47,48,20,33,31,13,13,34,21, 30,52,24,10,50,24,31,37)

out<- BIB.test(run, psi, monovinyl, test="waller", group=FALSE)

print(out)

** (Optional, with RStudio) if you still have RStudio open, then copy the text into a window in
RStudio and run it.

This is very simple — it is what RStudio is meant to do!

** In R-Instat use the View menu and click to open the script file.

** |If the script file is not empty then right-click and use Clear Script.
** Paste the commands above into the script file.

** Check that the data on the lines starting psi and monovinyl are all on 1 line. If not, then delete
the end of line so this is the case.

(RStudio has no problem executing R commands that extend over multiple lines. Currently R-Instat
expects one command per line.)

** Click to run this set of commands.
It should run and provide some output as shown in Fig. 2.

Fig. 2 The Output Fig. 3 Additional commands with View of the data

View(data.frame(run,psi,monovinyl))
'::’.Ean% b'_c:ké'_zf]:'_cc;_{% x a'TpZ:‘a T

-3 3 10 € 0.05 BIB

agricolae::bar.err(outSmeans,variation="range",ylim=c(0,60),bar=FALSE,col=0)

B! Data: datafra.. — m] X
File

** In R-Instat delete the first (library) line. Instead change the line “out<- BIB.test(...” to
“out<- agricolae::BIB.test(...”, i.e. add the name of the package, followed by 2 colons.

** Run the script window again. It should give the same result as before.

It would be good to see the data in a spreadsheet type window.

** Add the line View(data.frame(run,psi,monovinyl)) to the bottom of the script window.

** Right-click and choose Run Current Line.

16

It should show the 3 variables in the R-viewer. If not, then an error was made in the names of the
variables, or the brackets, or perhaps view was typed (all in lower case) instead of View.

It would be good also to add a graph of the resulting model.

** Add the line agricolae::bar.err(outSmeans,variation="range",ylim=c(0,60),bar=FALSE,col=0)
The last lines of the script are also shown in Fig. 3.

** Select this new line, then either right-click and choose Run Current Line, or press <Ctrl><Enter>.
This gives a plot of the means as shown in Fig. 4.

Fig. 4 Plot of means from analysis using agricolae package
File History Resize

60
]

50
I

40

30

10

250 325 400 475 550

7) Discussion on running this type of R-script

One reason for wanting to run this type of script in R-Instat would be to look at the resulting data in
the R-Instat data window, and then perhaps to use other R-Instat dialogues on these same data.
This is only possible if the data are in an R-Instat data book, or are added to an existing book. This
did not happen with the script above. The data in the 3 columns are floating in R but are not usable
by any other dialogues. Nor are they visible in the R-Instat data window.

The running of the script in Section 6 may have seemed satisfactory, but it is not. If the results of
section 6 are all that is needed, then it is much easier to use RStudio than R-Instat.

In RStudio the editor (the equivalent of the script window) is much more powerful and helps with
the construction of the command lines. Like a phone, it includes auto-complete, so it is simpler to
construct or correct commands. Some commands are also easier.

8) Putting data into an R-Instat data book

We use the same data as earlier, Section 6, with another “halfway” dialogue.
** Use File > New. Choose the first tab, which says Construct, Fig. 1.

** Copy the 3 data lines from the script in Section 6 into the corresponding fields in the dialogue,
Fig. 2.

17

** Copy the details of the description into the Comment field, Fig. 2
** Call the data frame BIB1.
** Press OK

Fig. 1 File> New Data Frame Fig. 2 Filled New Data Frame Dialog (Construct)

Construct = Command Empty | Construt | Command | F Empty I
No. Column Name Expression No. Column Name _ Bxpression
1 un gl{10.3)

2 2 psi ¢(250,325.475,250.475,550,325,400,550.400 4...

3 3 monoving c(16.18,32,19.46.45,26,39.61,21,35,55,19.47 4...

4 4

5 5

6 6

New Data Frame Name: |datal | New Data Frame Name: |BIB1
4] Comment: [Code generated by the dialog, New Data Frame | (-] Comment: |Code generated by the dialog, New Data Frame |

Resst Close Help Ok Reset Close Help To Script

The data for analysis are now in the data frame shown in Fig. 3.

Fig. 3 BIB1 data frame Fig. 4 The Model > Hypothesis Tests dialogue
un (fi psi mongvinyl
1h b
o P Test [agncoise:BiBtestblock =1t =y = test = c{d" Ykey". duncan” ‘wallr v | [Incude Argumerts
=
4 2 250 19 Data Frame: Rpackage: Agicolas v
5 2 475 4%
BIB1 v Agrcolas
6 2 550 5
7 3 5 % reT— BIE duncan dubn fiedman
8 3 400) okces x
3 3 =0 . an knuskal LSD medan nonaddeivy
ok w2 P o PBB | REGW | schefe
n 4 475 k3 monovinyl
12 4 £80 85 SNK waerden waber
15 5 19 Data
¥ 5 475 47 _— P
15 5 550 43 = o
% 6 250)
7 6 400 13 0] ()
1 6 475 k]l =
1B 7 250 1 Conf=0.95 Del
2 7 25 13 R=two" + | Oear
a7 400 3
2 g 20 2 Ty
a3 400 30
u g 550 52 [Save test object
5 g 20 24
% 9 5 10 .
7 - {4 Comment: | Code generated by the dog, Hypothesss Tests
S 550 50
4 ¥ | BB B4
| Eie | 0k Reset Close Heb To Soript
Showing 30 of 30 rows | Showing 3 of 3 columns

The next step is the command from the script for the analysis. This uses yet another “halfway”
dialogue:

** Use Model > Hypothesis Tests.
** Tick the checkbox to include arguments and change the package to agricolae Fig. 4.
** Press the BIB key, Fig. 4.

** Complete the dialogue as shown in Fig. 5, so it is consistent with the command given in the script
file.

18

** Click on Try
** Check the box to save the object as out.
** Click Ok.
Fig. 5 Hypothesis Test Dialog Fig. 6 Results

s treatmeans blockSize blocks r alpha test

. 3 5 3 10 € 0.05 BIB
Test |agricolae:BIB testilock =run , tt =psi .y =monovimyl , test =c{lsd" tukey™," v Include Arguments : “

Data Frame: Rpackage: | Agicolse b4 oV

BIB1 v Agricolae 31.6€6667 0.83333333 17.536665
BB duncan durbin friedman

Variables

an kruskal LSD medan nonaddeivity

e b PBIB REGW schefie

monovimi

SNK waerden waller

Data 0.75
— =
3.75
{1 0 54.25
Corf=085 ~ Del
Ar="two" + Clear
Ty ‘Cotrvnmdpmd\xgda\w Modfy input before running
[Save test object |out
[4] Comment: |Code generated by the dalog. Hypcthesis Tests . .
atcri, class™)
Ok Reset Close Help To Serpt [1] "group"”

9) Example: Adding a new graph to R-Instat

Rincludes over 13,000 packages. In this last section we show how to include an analysis in R-Instat
that is not currently provided as a menu option. One way is simply to do this analysis in RStudio, but
we assume here you would prefer to remain in R-Instat.

The example is to produce an adjusted boxplot, i.e. one that is designed for skew data. We illustrate
by looking at daily rainfall data. These are very skew and the ordinary boxplot is not particularly
helpful.

The function is in the R package called robustbase and is called adjbox. It produces a graph, but not

one through the ggplot2 system. The robustbase package is already used by R-Instat® for some other
functions, and hence is available.

We illustrate with climatic data from the R-Instat library.

** Use File > Open from Library.

** Choose the option to Load From Instat Collection and then press Browse.
** Select the Climatic directory and the file called Dodoma.rds

** Click Ok on the Import Dataset dialogue that has opened.

Fig. 1 shows the data file that has been opened. The rainfall variable is daily and is from 1935
onwards.

3 If you wish to use a command from a package that is not currently loaded into R-Instat, then one way is to
add the package in RStudio. That’s a simple operation. Then, start R-Instat again and the package will also be
available in R-Instat.

19

Fig. 1 Dodoma Data Frame

Fig. 2 Dodoma Filtered

g

EEEETFTETFTTFFEFEFEEEFTFTETEEEEFEEEEE
EETEETTESTTSTESEETETTSTTEETEEEETEE

g

A

v
<

Year Mooth (f) Day Date (D) | moeth_sbbe | doy 366 Rain Tmax Tmin A Year Mocth (f) Day Date (D) month_abbe doy_366 Ran
1 1935 1 1 19350101 Jan 1 00 NA NA 2 193 1 2 19350102 Jen 2 63
2 193 1 2 193501402 Jon 2 63 NA NA 3193 1 3 19350103 Jan 3 18
3193 1 3 19350143 Jan 3 18 NA NA 2z 1935 1 3 19350128 Jan b 785
4193 1 4 19350104 Jan 4 00 NA NA B 1935 1 b 19350129 Jan -] 18
51935 1 5 19350105 Jan 5 00 NA NA ¥ 193 1 k] 19350130 Jan 0 25
6 1935 1 6 19350106 Jan 6 00 NA NA ¥ 195 2 5 19350205 Feb % 282
7193 1 7 19350107 Jan 7 00 NA NA 2 193 2 1 1935-02-11 Feb 2 30
8 193% 1 8 193501408 Jan 8 05 NA NA 41935 2 16 1935-02-16 Feb 47 132
§ 1935 1 9 193501409 Jan 9 00 NA NA £ 9% 2 18 1935-02-18 Feb 49 55.1
10 1935 1 10 1935-01-10 Jan 10 00 NA NA 5135 2 2 19350220 Feb 51 178
1 1935 1 n 193501-11 Jan n 00 NA NA 21935 2 2 193502-22 Feb 53 48
12 1935 1 12 1935-01-12 Jan 12 00 NA NA % 9B 2 % 19350225 Feb 5% 38
31935 1 13 19350113 Jan 13 00 NA NA 5 1935 2 % 19350226 Feb 57 23
11935 1 1 19350114 Jan 14 00 NA NA %9 2 27 19350227 Feb 58 13
B 193 1 15 19350115 Jan 15 00 NA NA 0 195 3 1 19350301 Mar 61 U8
® 193% 1 16 19350116 Jan 16 00 NA NA 8 1935 3 7 1935-03-07 Mar 67 36
7 1935 1 17 19350117 Jan 17 00 NA NA 9 195 4 7 1935-04-07 Apr % 28
18 1935 1 18 19350118 Jan 18 00 NA NA 10 1935 4 10 1935-04-10 Apr 101 46
¥ 193% 1 19 19350119 Jan 19 00 NA NA 0o 4 n 19350411 Apr 102 213
2 193 1 2 19350120 Jan 2 00 NA NA 0?1935 4 12 1935-04-12 Ape 103 33
2193 1 2 19350121 Jan 21 00 NA NA 03 4 3 19350413 Apr 104 13
2 19% 1 2 19350122 Jan 2 00 NA NA g 4 2 19350421 Apr m 20
2 1935 1 bi] 19350123 Jan 3 00 NA NA M 1935 4 2 19350422 Apr 113 81
% 193 1 b1 19350124 Jan b1 00 NA NA 213 5 1 19350501 May 12 10
5 195 1 % 193501-25 Jan % 00 NA NA 9B 5 17 1935-05-17 May 13 417
% 193 1 % 19350126 Jan % 00 NA NA 3 163 12 1 19351201 Dec 3% 23
7193 1 27 19350127 Jan 27 00 NA N 3 1935 12 2 19351202 Dec 37 58
«r BIBY _Dod«[g < > <) BIBI M‘l

Showing 28855 of 28355 rows | Showing 10 of 10 columns Showing 3379 of 3379 rows (28855) | Showing 10 of 10 columns

Our aim is to do an adjusted boxplot on the non-zero rainfall data. We start with an ordinary
boxplot, which provides a similar set of commands. We then change the script to provide the

adjusted boxplot.

The first task is to filter out the zero rainfalls.

** Right-click in the name field and choose Filter, or use Prepare > Data Frame > Filter.

** Choose the option to Define New Filter.

** On the sub-dialogue use the condition Rain > 0.85.

** On returning to the main dialogue, accept this condition.
The data should now look as shown in Fig. 2.

** Use the menu item Describe > Specific > Boxplot.

Fig. 3 Ordinary boxplot Fig 4 Results
B3 R Graphics: Device 2 (ACTIVE) - o x
File History Resze
| Boxplot JtterPlot | Violin Plot - .
Data Frame: 1
Dodoma et Single Variable .__| :
Factors Rain T ;s .
Month ' 1 !
month_abbr Add - = & 1 - 5
, A :
Data o I R e
month_abbr | N 10 Y
Boxplot Options Second Factor (Optional): ! ! i | 1 |
—_— — | :
[] Horizontal Plot !
[] save Graph é u H
4] Comment: [Code generated by the dialog. Boxplot = o
Ok Reset Close Help To Script Jan Fab M Age My sum s0p t Niw Dwc

manth_abibr

20

** Complete the dialogue as shown in Fig. 3.

The resultis in Fig. 4. It is of some interest, but the ordinary boxplot is not intended for data that are
as skew as these.

** Check the script window is empty

** Return to the dialogue and press the Script button.

* %

Fig. 5 Script window for the boxplot commands

1. Dodoma <- data_bookSget_data_frame(data_name="Dodoma")

2. last_graph <- ggplot2::ggplot(data=Dodoma, mapping=ggplot2::aes(y=Rain, x=month_abbr)) +
ggplot2::geom_boxplot(varwidth=TRUE, outlier.colour="red") + theme_grey()

3. data_bookS$Sadd_graph(graph_name="last_graph", graph=last_graph, data_name="Dodoma")

4. data_bookSget_graphs(data_name="Dodoma", graph_name="last_graph")

5. rm(list=c("last_graph", "Dodoma"))

Line numbers have been added in Fig. 5and it is line 2 that has to change. From the manual for the
robustbase package we find that a possible command is:

last_graph <- robustbase::adjbox(Rain ~ month_abbr, data =Dodoma, col="red”, varwidth=TRUE)
** Make this the new line 2 in Fig 5.
** Press Run All at the top of the script window.

You should get the graph shown in Fig. 6. The code has done more than this, because it has also
saved the resulting object in the R-Instat data book.

** Use Prepare > R Objects > View
** Take the option to Print the last_graph.

Part of the results are shown in Fig. 7.

Fig. 6 Fig. 7

120

100

24
g

Enln.
Jan Feb Mar Ape

o My W A

T
Sep ot N Dec

[1] "Jan" "Feb" "Mar" "Rpr" "May" "Jun” "Jul" "Aug" "Sep" "Oct” "Nov" "Dec”

They show there were just 3 outliers, namely 119.8mm, 41.7mm and 90.4mm in February, May and
November.

21

