instituto português do mar e da atmosfera

Network of Satellite Application Facilities

The EUMETSAT

Land Surface Temperature estimates from infrared and microwave sensors

Ana C. Pires, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins

5th SALGEE Workshop 2017 Yerevan, Armenia, 18 - 20 September 2017

- Towards a global harmonised LST product:
 - merging geostationary sensors and polar sensors;
 - calibrating all as if only one sensor is observing Earth;
 - correcting LST estimates for angle dependency.
- Towards an operational all-weather LST product:
 - infrared LST is clear-sky only;
 - methods for obtaining LST estimates in cloudy conditions:
 - . microwave LST (see talk by Carlos Jimenez next!);
 - . surface model-derived skin temperature.

Outline

Instituto Português do Mar e da Atmosfera, I.P. Rus C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

- Towards a global harmonised LST product:
 - merging geostationary sensors and polar sensors;
 - calibrating all as if only one sensor is observing Earth;
 - correcting LST estimates for angle dependency.
- Towards an operational all-weather LST product:
 - infrared LST is clear-sky only;
 - methods for obtaining LST estimates in cloudy conditions:
 - . microwave LST (see talk by Carlos Jimenez next!);
 - . surface model-derived skin temperature.

Objective

To produce global LST as if measured by the same sensor from the same point of view

Geostationary Satellites (GEOs)

 MSG - Meteosat Second Generation (Eumetsat) SEVIRI (Spinning Enhanced Visible and Infrared Imager)
 MTEAT 2 Multi function Transport Setellite (IMA) > neuronality

- > MTSAT-2 Multi-function Transport Satellite (JMA) > now HIMAWARI-8! JAMI (Japanese Advanced Meteorological Imager)
- > GOES-East Geostationary Operational Environmental Satellites (NASA)

Instituto Português do Mar e da Atmosfera, I.P. Rua C - Aeroporto de Lisboa 1749-077 Lisboa – Portugal

Geostationary Satellites (GEOs)

 MSG – Meteosat Second Generation (Eumetsat) SEVIRI (Spinning Enhanced Visible and Infrared Imager)
 MTEAT 2 Multi function Transport Setallite (IMA) > new HIM

- > MTSAT-2 Multi-function Transport Satellite (JMA) > now HIMAWARI-8! JAMI (Japanese Advanced Meteorological Imager)
- > GOES-East Geostationary Operational Environmental Satellites (NASA)

Source: http://www.ssec.wisc.edu/mcidas/doc/learn_guide/2007/sat-1.html

Low-Earth Orbit Satellites (LEOs)

 > Aqua & Terra (NASA) MODIS (Moderate Resolution Imaging Spectroradiometer)
 > AATSR (Envisat) Advanced Along Track Scanning Radiometer

Objective

To produce global LST as if measured by the same sensor from the same point of view

Challenges

- > different sensor characteristics
 - . mono- or dual-channel in the thermal infrared
 - . different sensor spectral functions
 - . different input data
 - . different retrieval formulations (both LST and cloudmask)

Objective

To produce global LST as if measured by the same sensor from the same point of view

Challenges

> different sensor characteristics

- . mono- or dual-channel in the thermal infrared
- . different sensor spectral functions
- . different input data
- . different retrieval formulations (both LST and cloudmask)

> different acquisition times

- . the GEOs' scanning times spans from 12 to 26 minutes
- . scanning direction can be N->S or S->N
- . stamp time can refer to beginning, middle or end of scan

Objective

To produce global LST as if measured by the same sensor from the same point of view

Challenges

> different sensor characteristics

- . mono- or dual-channel in the thermal infrared
- . different sensor spectral functions
- . different input data
- . different retrieval formulations (both LST and cloudmask)

> different acquisition times

- . the GEOs' scanning times spans from 12 to 26 minutes
- . scanning direction can be N->S or S->N
- . stamp time can refer to beginning, middle or end of scan

> different spatial resolutions

Objective

To produce global LST as if measured by the same sensor from the same point of view

Challenges

> different sensor characteristics

- . mono- or dual-channel in the thermal infrared . different sensor spectral functions
- . different input data
- . different retrieval formulations (both LST and cloudmask)

> different acquisition times

- . the GEOs' scanning times spans from 12 to 26 minutes
- . scanning direction can be N->S or S->N
- . stamp time can refer to beginning, middle or end of scan
- > different spatial resolutions

dealt with through calibration, although not every issue is perfectly solved

Methodology

> Taking SEVIRI (LSA SAF product) as reference (robust and reliable)
 > Using MODIS as the common denominator because it has a wider range of viewing angles, necessary for computing the angular correction
 > Using AATSR in the LEO+GEO product

Methodology

> Taking SEVIRI (LSA SAF product) as reference (robust and reliable)
 > Using MODIS as the common denominator because it has a wider range of viewing angles, necessary for computing the angular correction
 > Using AATSR in the LEO+GEO product

CALIBRATION Removing the bias between sensors

> by removing the systematic differences between sensors, we attenuate the differences due to different sensor characteristics, input data, and LST retrieval methods

> Linear regressions:

 $LST_{GEO} = m*LST_{SEVIRI} + b$ $LST_{AATSR} = m*LST_{SEVIRI} + b$ where $LST_{SEVIRI} = m*LST_{MODIS} + b$ > Computation by groups of landcover (cluster analysis)

Methodology

> Taking SEVIRI (LSA SAF product) as reference (robust and reliable)
 > Using MODIS as the common denominator because it has a wider range of viewing angles, necessary for computing the angular correction
 > Using AATSR in the LEO+GEO product

> by removing the systematic differences between sensors, we attenuate the differences due to different sensor characteristics, input data, and LST retrieval methods

> Linear regressions:

 $LST_{GEO} = m^*LST_{SEVIRI} + b$ $LST_{AATSR} = m^*LST_{SEVIRI} + b$ where $LST_{SEVIRI} = m^*LST_{MODIS} + b$ > Computation by groups of landcover

(cluster analysis)

ANGULAR CORRECTION

Bringing the calibrated sensors to nadir view

- > adds directional correction on top of bias correction
- > viewing and illumination angles as input
- > Kernel Model: computation by groups of landcover (cluster analysis)

 $T(\theta_{v},\theta_{i},\Delta\varphi)/T_{0} = 1 + \boldsymbol{A}\Phi(\theta_{v}) + \boldsymbol{D}\Psi(\theta_{v},\theta_{i},\Delta\varphi)$

- θ , φ : zenith, azimuth angles
- v, i: viewing, illumination angles
- $\Phi(\theta_v)$: <u>emissivity kernel</u> (observation angle anisotropy)
- $\Psi(\theta_v, \theta_i, \Delta \varphi)$: <u>solar kernel</u> (spatial inhomogeneity of surface heating and shadowing landcover) $\Psi = 0$ in night-time

Vinnikov et al. (2012): Angular anisotropy of satellite observations of land surface temperature. (Geophys. Res. Lett.)

Methodology

> Taking SEVIRI (LSA SAF product) as reference (robust and reliable)
 > Using MODIS as the common denominator because it has a wider range of viewing angles, necessary for computing the angular correction
 > Using AATSR in the LEO+GEO product

> by removing the systematic differences between sensors, we attenuate the differences due to different sensor characteristics, input data, and LST retrieval methods

> Linear regressions:

 $LST_{GEO} = m^*LST_{SEVIRI} + b$ $LST_{AATSR} = m^*LST_{SEVIRI} + b$ where $LST_{SEVIRI} = m^*LST_{MODIS} + b$ > Computation by groups of landcover

(cluster analysis)

ANGULAR CORRECTION

Bringing the calibrated sensors to nadir view

- > adds directional correction on top of bias correction
- > viewing and illumination angles as input
- > Kernel Model: computation by groups of landcover (cluster analysis)

 $T(\theta_{v},\theta_{i},\Delta\varphi)/T_{0} = 1 + \boldsymbol{A}\Phi(\theta_{v}) + \boldsymbol{D}\Psi(\theta_{v},\theta_{i},\Delta\varphi)$

- θ , φ : zenith, azimuth angles
- v, i: viewing, illumination angles
- $\Phi(\theta_v)$: <u>emissivity kernel</u> (observation angle anisotropy)
- $\Psi(\theta_v, \theta_i, \Delta \varphi)$: <u>solar kernel</u> (spatial inhomogeneity of surface heating and shadowing landcover) $\Psi = 0$ in night-time

Vinnikov et al. (2012): Angular anisotropy of satellite observations of land surface temperature. (Geophys. Res. Lett.) Ermida et al. (2017): Modelling directional effects on remotely sensed land surface temperature (Rem. Sens. of Envioronm.)

1st Jan 2013 at 21:00 UTC

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

1st Jan 2013 at 21:00 UTC

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

LST

15th Jul 2011 at 00:00 UTC

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

pma

15th Jul 2011 at 00:00 UTC

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

ma

<u>Highlights</u>

Global LST data which resolve the diurnal cycle

- > Combined GEO+LEO 3-hourly product at UTC
- > Merged geostationary (GEO) and low earth orbit (LEO) data giving high spatial resolution, sub-diurnal sampling; estimates of cloud-bias.
- > Intercalibrated LST using Land-SAF SEVIRI as a reference sensor
- > Estimates of what LST should be if always measured at nadir (angular dependency removed)

<u>Highlights</u>

Global LST data which resolve the diurnal cycle

> Combined GEO+LEO 3-hourly product at UTC

> Merged geostationary (GEO) and low earth orbit (LEO) data giving high spatial resolution, sub-diurnal sampling; estimates of cloud-bias.

> Intercalibrated LST using Land-SAF SEVIRI as a reference sensor

> Estimates of what LST should be if always measured at nadir (angular dependency removed)

Operational

> Future implementation of the angular correction as an extra layer of the LSA-SAF LST product

Outline

- Towards a global harmonised LST product:
 - merging geostationary sensors and polar sensors;
 - calibrating all as if only one sensor is observing Earth;
 - correcting LST estimates for angle dependency.
- Towards an operational all-weather LST product:
 - infrared LST is clear-sky only;
 - methods for obtaining LST estimates in cloudy conditions:
 - . microwave LST (see talk by Carlos Jimenez next!);
 - . surface model-derived skin temperature.

Motivation

- Land Surface Temperature (LST) products based on remote infrared (IR) measurements are clear-sky only.
- Some applications would benefit of LST produts with less "gaps" due to clouds
- Ways to provide all-weather LST:

> surface models

> microwave (MW) measurements

• The LSA-SAF already has an algorithm that produces evapotranspiration which also produces skin temperature as a byproduct.

LSA SAF

The EUMETSAT Network of atellite Application Facilities

All-weather LST

Infrared LST (clear-sky)

Generalized Split-Windows (Wan and Dozier, 1996; Freitas et al, 2010)

$$LST = \left(A_1 + A_2 \frac{1 - \epsilon}{\epsilon} + A_3 \frac{\Delta \epsilon}{\epsilon^2}\right) \frac{T_{IR1} + T_{IR2}}{2} + \left(B_1 + B_2 \frac{1 - \epsilon}{\epsilon} + B_3 \frac{\Delta \epsilon}{\epsilon^2}\right) + C$$

- *A_i*, *B_i* and *C* model coefficents. Determined by classes of viewing angle and total column water vapor (retrieved from ECMWF forecasts)
- *ϵ* and Δ*ϵ* surface emissivity (IR1 and IR2 average and difference). Determined by the Vegetation Cover method (Trigo et al., 2008) as an average of bareground and vegetation emissivities, weighted by the **FVC** (produced by LSA-SAF).
- T_{IR1} and T_{IR2} infrared brightness temperatures

LSA SAF

The EUMETSAT Network of stellite Application

All-weather LST

Infrared LST (clear-sky)

Generalized Split-Windows (Wan and Dozier, 1996; Freitas et al, 2010)

$$LST = \left(A_1 + A_2 \frac{1 - \epsilon}{\epsilon} + A_3 \frac{\Delta \epsilon}{\epsilon^2}\right) \frac{T_{IR1} + T_{IR2}}{2} + \left(B_1 + B_2 \frac{1 - \epsilon}{\epsilon} + B_3 \frac{\Delta \epsilon}{\epsilon^2}\right) + C$$

State of the art, takes advantage of both MSG TIR channels (used at LSA-SAF)

> Clear-sky only

- *A_i*, *B_i* and *C* model coefficents.
 Determined by classes of viewing angle and total column water vapor (retrieved from ECMWF forecasts)
- ϵ and $\Delta\epsilon$ surface emissivity (IR1 and IR2 average and difference). Determined by the Vegetation Cover method (Trigo et al., 2008) as an average of bareground and vegetation emissivities, weighted by the **FVC** (produced by LSA-SAF).
- T_{IR1} and T_{IR2} infrared brightness temperatures

Cloudy sky LST (ET model)

Surface energy balance equation (*tile i*)

Heat

Net radiation

 $Rn_i = H_i + LE_i + G_i$ Ground heat (conduction) Sensible Latent Heat

All-weather

Provider

LSA-SAF

LSA-SAF

LSA-SAF

LSA-SAF

H-SAF

H-SAF

LSA-SAF

LSA-SAF

ECMWF IFS

Snow

k

[_k

LST

LAI, F_v(LAI, FVC)

Biophysical parameters

Soil moisture

(SC2)

(SM-DAS-2)

(LST)

NWP

ECMWF IFS

ECOCLIMAP-I

Frequency

30 min

30 min

1 dav

15 min

3 hours

Static

1 day

1 dav

3 hours

1 day]

15 min

> Problems in the representation of diurnal cycle in some locations

All-weather

Cloudy sky LST (MW)

- Passive MW measurements less affected by clouds than IR observations
- Microwave emissivities have large variability (soil moisture, vegetation cover, presence of snow)
- Spatial resolution of the MW observations is typically lower than IR measurements
- MW radiation can emanate from the **subsurface**, **not from the surface skin**

Cloudy sky LST (MW)

- Passive MW measurements less affected by clouds than IR observations
- Microwave emissivities have large variability (soil moisture, vegetation cover, presence of snow)
- Spatial resolution of the MW observations is typically lower than IR measurements
- MW radiation can emanate from the **subsurface**, **not from the surface skin**

> application

- - -> see Carlos Jimenez talk next!

Evora In-situ LST

Gobabeb

Kalahari

Institut Rua C - Aeroporto de Lisboa 1749-077 Lisboa – Portugal

1.

Instituto Português do Mar e da Atmosfera, I.P. Rua C - Aeroporto de Lisboa 1749-077 Lisboa - Portugal

Comparison of SEVIRI LST, and Skin Temp from the ET model with in-situ LST. Data from 2010. No outliers $(3\sigma$ -filter)

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

Diurnal/Seasonal Cycle of error

Instituto Português do Mar e da Atmosfera, I.P. Rua C - Aeroporto de Lisboa 1749-077 Lisboa - Portugal

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa - Portugal

ip*m*a

Instituto Português do Mar e da Atmosfera, I.P. Rua C- Aeroporto de Lisboa 1749-077 Lisboa – Portugal

ip*m*a

<u>Highlights</u>

- A new all-weather LST product is proposed, using IR-based LST for clear-sky and Tskin derived from an evapotranspiration model with mostly remote sensing data as inputs to fill cloudy scenes in the operational Land-SAF LST product.
- This approach is better than the MW approach as it allows a better timesampling and leads to better error statistics (as estimated by comparison with 3 in-situ stations).
- Still, the diurnal cycle is not well represented by the model in certain locations (overestimation in the late morning and under-estimation in late-afternoon/early-night in less vegetated areas).
- The new product still does not allow full coverage:
 - in some pixels algorithm convergence is not achieved
 - unavailable inputs (radiative fluxes, etc.)

The EUMETSAT Network of Satellite Application Facilities

Land Surface Temperature estimates from infrared and microwave sensors

Ana C. Pires, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins

THANK YOU FOR YOUR ATTENTION!

