Albedo and Incoming solar radiation flux from LSA-SAF : Algorithms, validation and applications

Dominique Carrer - Florian Pinault Meteo-France

Salgee 2017

Albedo and Incoming solar radiation flux from LSA - SAF : Algorithms, validation and applications

- Introduction
- Albedo Product
 - Theory and definition
 - Bidirectional reflectance function
 - Albedo product
- Incoming solar radiation flux Product : DSSF
 - Theory and definition
 - Downwell Shortwave Solar Flux
- Applications
 - Fapar, Lai, fcover, NDVI
 - Use of albedo for Land-surface model
 - Use of albedo for Numerical Weather Prediction
 - Vegetation and soil albedo
 - Use of Downwell flux for Land-surface model
 - Use of Downwell flux for climate
 - Aerosol Icare

LSA-SAF : Land Surface Analysis Satellite Applications Facility

UMR3589

CNRM

Ć

METEO FRANCE

- MSG (SEVIRI) (Meteosat Second Generation) geostationary (high altitude : 36000 km)
 - High temporal resolution (15 min)
 - Spatial resolution (3km /cos(lat)/cos(long))
- EPS (AVHRR) (Metop) (Eumetsat Polar System) polar (Low altitude : 817 km)
 - Spatial resolution (3 à 6 km)
 - Temporal resolution (10 jours)
- MTG (Meteosat Third Generation) geostationary
 - High temporal resolution (10 min)
 - Higher spatial resolution
- EPS-SG (Eumetsat Polar System second generation) polar (low altitude : TBD)
 - Résolution spatiale (TBD)
 - Résolution temporelle (TBD)

Florian Pinault – Dominique Carrer SALGEE 2017

THE PRODUCTS

Acronym	Institution
AL	MF
BRDF	MF
LST	IM
TSP	ΙΜΚ
EM	ICAT
DSSF	MF
DSLF	IM
SC	SMHI
ET	RMI
FVC	UV
LAI	UV
RFM	IDL
FRP&FRE	
fAPAR	UV

THE PRODUCTS

UMR3589

CNRM

¢

METEO

FRANCE

Acronym	Institution
AL	MF
BRDF	MF
LST	IM
TSP	ΙΜΚ
EM	ICAT
DSSF	MF
DSLF	IM
SC	SMHI
ET	RMI
FVC	UV
LAI	UV
RFM	IDL
FRP&FRE	
fAPAR	UV

Florian Pinault – Dominique Carrer SALGEE 2017

Land-SAF Consortium

IPMA (Portugal) - Leading Institut ipma

- MF (France)
- RMI (Belgium)
- NIMH (Bulgaria)
- ARSO (Slovenia)

KCL (King's College London)

- IDL (Univ Lisbon)
- KIT (Karlsruhe Inst Technology) **KIT**

VITO (Flemish Inst Technological)

UV (Univ Valencia)

vito

Total Funding: > 10 M€

(EUMETSAT Contribution : ~ 67%)

Florian Pinault – Dominique Carrer SALGEE 2017

University of Londor

10 Institutes / 8 Countries

Land-SAF Chronogram

LSA-SAF users and applications

Users/applications:

Land Surface Modelling - Energy and Carbon fluxes; Hydrology

- Radiation: LST (Land Surface Temperature), Albedos, Down-welling Radiation Fluxes
- Vegetation Parameters and Indices
- ET (Evapo-Transpiration) and Turbulent Heat Fluxes
- Fire: Fire Radiative Power

Agriculture and Forestry applications

- Vegetation Parameters and Indices
- ET, Reference ET and Turbulent Heat Fluxes
- Fire Products: identification, FRP, risk and burnt areas
- Radiation: LST, Albedos, Down-welling Radiation Fluxes

Air Quality Monitoring and Forecasting

• Fire: FRP

Environmental monitoring

- LST
- ET and Reference ET
- Vegetation Parameters and Indices
- Fire Products

Food Security

- ET and Reference ET
- Vegetation Parameters and Indices
- Fire Products

Energy sector

 Radiation: Short-wave Down-welling Radiat Fluxes

Climate applications

Numerical Weather Prediction

- LST (and Emissivity), Albedos
- Vegetation Parameters and Indices

Users

Registered for regular/offline acquisition of LandSAF Products

- EUMETCast: > 1000 in Jul 2014
- LandSAF website: > 1500

UMR3589

CNRM

Ó

METEO

FRANCE

• ftp NRT dissemination 20-30

New Users

LSA-SAF Set of Albedo Products

Instrument	Product	Status
SEVIRI/ MSG (2005 until now) (MSG disk - 3km sub-satellite)	Total surface albedo (LSA108/daily & LSA109/10-day & LSA150/Reprocessing daily) Vegetation albedo, bare soil albedo, and snow albedos (LSA104/daily)	Operational In Development
AVHRR /Metop (2016 until now) (Global - 1km)	Total surface albedo (LSA103/10-day)	Pre-Operational
FCI/MTG (launch in 2020) (MTG disk - 1km sub-satellite)	Total surface albedo (LSA107-108/daily)	-
VII/EPS-SG (launch in 2022) (Global – 0,75km)	Total surface albedo (LSA110/10-day)	-
3MI/EPS-SG (launch in 2022) (Global - 4km)	Total surface albedo (LSA111/10-day)	-

Albedo Algorithm

PRODUCT CHARACTERISTICS (MDAL - LSA108)

01.03.2006

Ċ

METEO

FRANCE

CNRM

Spatial Resolution: 3km at Sub-Satellite Point Projection: native MSG/SEVIRI Projection Production Frequency: Daily (also 10 days) Effective Temporal Resolution: 5 Days (also monthly) Format: HDF5 Timeliness: 3 hours

Dissemination:

- EUMETSAT broadcast system (EUMETCast)
- project website (http://landsaf.meteo.pt)

Spectral Albedos (6):

- 0.6µm (DH&BH)
- 0.8µm (DH&BH)
- 1.6µm (DH&BH)

BroadBand Albedos (4):

- VIS-DH [0.4µm, 0.7µm]
- NIR-DH [0.7µm, 4.0µm]
- SW-DH [0.3μm, 4.0μm]
- SW-BH [0.3μm, 4.0μm]

COMPARISON WITH MODIS ALBEDO (1/2)

¢

METEO FRANCE

COMPARISON WITH MODIS ALBEDO (2/2)

ALBEDO TIME SERIES (snowfall episodes)

SUMMARY OF PERFORMANCES (ALBEDO MSG)

Accuracy

Over mid-latitude region:

bias: 5% in relative units for SW and NIR broadband albedo (except for snow/ice pixels) – below 0.01 in absolute unit
20% for VIS broadband albedo (potentially due to the use of different BRDF models and aerosol products)
stdev: 0.015 for VIS and 0.030 for NIR and SW (or BB)

Over brightening surfaces (North Africa): no degradation in relative units

Documentation :

(Product User Manual + Validation Report + ATBD + internal documents) Available here : http://lsa-saf.eumetsat.int/

Publications:

Carrer, D., Roujean J.-L., Meurey C., "Evaluating operational MSG/SEVIRI land surface albedo products from LSA-SAF with ground measurements and MODIS", IEEE Transactions on Geoscience and Remote Sensing, doi:10.1109/TGRS.2009.2034530.

Geiger, B., Carrer D., Franchistéguy L., Roujean J.-L., Meurey C., 2008, "*Land Surface Albedo derived on a daily basis from Meteosat Second Generation Observations*", IEEE Transactions on Geoscience and Remote Sensing, 46, 3841–3856, doi:10.1109/TGRS.2008.2001798.

PRODUCT CHARACTERISTICS (ETAL - LSA103)

EPS BB-BH ALBEDO

Spatial Resolution: 0.01°x0,01° **Projection:** Global - native EPS **Production Frequency:** 10-Day Format: HDF5 **Timeliness:** 3 hours **Status:** pre-operational

Spectral Albedo (6): 0.6µm, 0.8µm, and 1.6µm (DH&BH)

Broad band Albedo (4):

VIS-DH ([0.4µm, 0.7µm]) NIR-DH ([0.7µm, 4.0µm]) SW-DH ([0.3µm, 4.0µm]) SW-BH ([0.3µm, 4.0µm])

PRODUCT CHARACTERISTICS (ETAL - LSA103)

EPS BB-BH ALBEDO

MODIS WSA ALBEDO 20150325

Spatial Resolution: 0.01°x0,01° **Projection:** Global - native EPS Production Frequency: 10-Day Format: HDF5 Timeliness: 3 hours **Status:** pre-operational

Spectral Albedo (6): 0.6µm, 0.8µm, and 1.6µm (DH&BH)

Broad band Albedo (4): VIS-DH ([0.4µm, 0.7µm])

NIR-DH ([0.7µm, 4.0µm]) SW-DH ([0.3µm, 4.0µm]) SW-BH ([0.3µm, 4.0µm])

MODIS

RESULTS (ETAL - LSA103)

AL-BB-BH EPS vs MODIS

LSA-SAF Set of DSSF Products

Instrument	Product	Status
SEVIRI/MSG (2005 until now) (MSG disk - 3km sub-satellite)	MDSSF (LSA-201) instantaneous values	Operational
	DIDSSF (LSA-203) daily accumulated values	Operational
	MDSSFDD (LSA-207) instantaneous estimates of direct and diffuse incoming solar radiation at the surface level.	In Development
FCI/MTG (launch in 2020) (MTG disk - 1km sub-satellite)	MDSSF (LSA-209) instantaneous values	-
	DIDSSF (LSA-211) daily accumulated values	

METHOD FOR RETRIEVAL DSSF – LSA-201/203

DSSF INPUT DATA

- Satellite Data (TOA-radiances)
- Solar and View Angles
- Land/Sea Mask
- Cloud Mask (SAF-NWC software)
- Total Column Water Vapour (ECMWF)
- Ozone Content (Climatology)
- Land Surface Albedo (Land-SAF AL product)

PRODUCT CHARACTERISTICS (DSSF – LSA-201/203)

UMR3589

CNRM

Ċ

METEO

FRANCE

Spatial Resolution: 3km at Sub-Satellite Point Projection: native MSG/SEVIRI Projection Production Frequency: 30 Minutes Instantaneous Flux Estimate Format: HDF5 Timeliness: 3 hours Dissemination: - EUMETSAT broadcast system (EUMETCast)

- project website (http://landsaf.meteo.pt)

Wavelength interval: [0.3µm, 4.0µm]

Validation of DSSF over France with RADOME network (LSA-201)

LAND SURFACE ANALYSIS

UMR3589 METEO FRANCE

Time series example (LSA-201)

¢

METEO FRANCE

SUMMARY OF PERFORMANCES (DSSF)

Accuracy

Biais:

Between the satellite product and the ground data is small : < **10 W.m–2** (absolute value)

Stdev :

Between instantaneous satellite estimates and ground measurements :

~ 40 W m–2 for clear sky data

~ 110 W m–2 for cloudy sky data.

Related publications:

- Geiger, B., Meurey, C., Lajas, D., Franchistéguy, L., Carrer, D. and Roujean, J.-L. (2008), Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Met. Apps, 15: 411–420. doi:10.1002/met.84

- See also : Product User Manual, and Validation Report, internal documents

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Downwell flux for Land-surface model Use of Albedo for climate Aerosol product from MSG (Icare)

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Downwell flux for Land-surface model Use of Albedo for climate Aerosol product from MSG (Icare)

Application of Albedo Algorithm

FRACTIONAL VEGETATION COVER

Geostationar y

LEAF AREA INDEX

Geostationar y

fAPAR

Geostationar y

NDVI (METOP-AVHRR)

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Downwell flux for Land-surface model Use of Albedo for climate Aerosol product from MSG (Icare)

Use of albedo product

- Use of albedo product for Land Surface model (LSM) : OFFLINE
 - Injecting the albedo in the ISBA model improve its performances

ISBA Land Surface Model

Atmosphere:

- Online: NWP/climate atmospheric model
- Offline: Temperature, water vapor, rainfall, incoming solar radiation, longwave flux, wind, etc. from reanalysis (SAFRAN, ERA-Interim) or observations.

Surface:

Isba model: energy, water and carbon fluxes.

Physiography:

- Two experiments :
 - <u>Eco</u>: Albedo from database (ECOCLIMAP)
 - <u>Saf</u> : Albedo from SAF MSG observations.

Use of albedo product for LSM (OFFLINE)

JJA: maximum difference TG1 (Eco vs SAF)

UMR3589

CNRM

Ċ

METEO

Land surface model: ISBA (~9.5km) forced by SAFRAN atmospheric analysis. Two experiments: with Ecoclimap albedo and with LSA-SAF albedo analysis Run every day at 00h (2006) – in offline mode

JJA:

-AALB between -0.1 and 0.1

Impact on:

- - Δ TG1 between -3 and +6°K
- - Δ TG2 between -1 and +2°K
- - Δ WG1 between -0.04 and +0.04 m3/m3
- -ΔWG2 < 0.01 m3/m3

- Use of BRDF for Fapar, Lai, fcover, NDVI
- Use of albedo for Land-surface model
- **Use of albedo for Numerical Weather Prediction**
- Use of Albedo for Vegetation and soil albedo
- Use of Downwell flux for Land-surface model
- Use of Albedo for climate
- Aerosol product from MSG (Icare)

Use of albedo product

- Use of albedo product for Numerical Weather Predition (NWP) : ONLINE
 - Injecting Albedo in NWP model reduces the temperature bias in winter.

Use of albedo product for NWP (ONLINE)

Weather forecast model: ALADIN (~9.5km) Two experiments: with ALADIN albedo and with LSA-SAF albedo analysis Run every day at 00h (2007) - 54h forcast

(J. Cedilnik, D. Carrer, J.-F. Mahfouf, and J.-L. Roujean "Impact assessment of daily satellite derived surface albedo in a limited area NWP model", **Submitted to J. of Ap. Meteorology and Climatology**)

Use of albedo product for NWP (ONLINE)

Score T2m (forecast 12h) (mean average over East of Europe)

Conclusion of Score Study: weather model has a significant cold bias in winter. Satellite data allows to reduce the bias.

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Downwell flux for Land-surface model Use of Albedo for climate Aerosol product from MSG (Icare)

MDAL-SVS PRODUCT CHARACTERISTICS (LSA-104)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

Directionnal-Hemispherical vegetation albedo in the visible domain [0,3-0,7µm]

Separated Soil Vegetation Snow Albedo (MDAL-SVS)

Spatial Resolution: 3km at Sub-Satellite Point Projection: native MSG/SEVIRI Projection Production Frequency: Daily Effective Temporal Resolution: 5 Days

Format: HDF5 Timeliness: 3 hours Status: in development

BroadBand Albedo (6):

- soil, vegetation, and snow albedos
- VIS-BH [0.4µm, 0.7µm]
- NIR-BH [0.7μm, 4.0μm]

METHOD FOR RETRIEVAL (LSA104)

Method: Kalman Filtering to generate a daily analysis of the surface albedo components

Satellite product: total surface albedo and its uncertainty Output fields: - bare soil albedo

- vegetation albedo

$$x_{i}^{a} = x_{i}^{b} + K_{i} [y_{i} - Hx_{i}^{b}]$$

$$K_{i} = A_{i}^{b} H^{T} [H A_{i}^{b} H^{T} + R_{i}]^{-1}$$

• obs. vector
• obs. operator.....

$$H = \begin{bmatrix} 1 \\ 0 \\ veg \\ [(\sigma_{v}^{c}) \end{bmatrix}$$

obs. error

- J. Cedilnik, D. Carrer, J.-L. Roujean and J.-F. Mahfouf, 2012, Analysis of satellite derived surface albedo for numerical weather prediction, J. Climate Appl. 2012
- Carrer, D., Meurey, C., Ceamanos, X., Roujean, J.-L., Calvet, J.-C., and Liu, S. (2014), • Dynamic mapping of snow-free vegetation and bare soil albedos at global 1km scale from 10-year analysis of MODIS satellite products, Remote Sensing of Environment, Vol. 140. pp. 420-432.

RESULTS

RESULTS

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Albedo for climate Use of Downwell flux for Land-surface model Aerosol product from MSG (Icare)

Use of albedo product for climate (ONLINE)

Model: ARPEGE-Climat Run: 1979-2010 **2 experiments:**

-with ECOCLIMAP albedo (Ref.);

-with MODIS albedo (10ans). (Carrer et al., RSE, 2014a)

Relative difference betwen ECOCLIMAP and MODIS

Where alb <= 0.5 : Stdev= 24.7% Bias= -8.5%

Use of albedo product for climate (ONLINE)

Use of albedo product for climate (ONLINE)

- Use of BRDF for Fapar, Lai, fcover, NDVI
- Use of albedo for Land-surface model
- Use of albedo for Numerical Weather Prediction
- Use of Albedo for Vegetation and soil albedo
- Use of Albedo for climate
- Use of Downwell flux for Land-surface model Aerosol product from MSG (Icare)

Use of DSSF product for LSM (ONLINE)

land surface model: ISBA 2 experiments: SAFRAN atmospheric analysis (Ref) or LSA-SAF DSSF (blue)

Difference statistics of Net Radiation (RN) over Aurade station based on ISBA simulations in using various forcing

- When satellite data are considered, the standard deviation of net radiation simulated with ISBA model can decease by 20 W.m⁻² in comparison with ground-measurements.
- As many areas lack a high resolution meteorological forcing, the LSA-SAF radiative products provide new and valuable information.

Publication : D. Carrer, S. Lafont, J.-L. Roujean, J.-C. Calvet, C. Meurey, P. Le Moigne, and I. Trigo, 2011: *Incoming solar and infrared radiation derived from METEOSAT: impact on the modelled land water and energy budget over France*, J. Of Hydrometeorology.

Use of BRDF for Fapar, Lai, fcover, NDVI Use of albedo for Land-surface model Use of albedo for Numerical Weather Prediction Use of Albedo for Vegetation and soil albedo Use of Albedo for climate Use of Downwell flux for Land-surface model Aerosol product from MSG (Icare)

Albedo Algorithm

Improve model parametrization

An additional kernel in the model allows direct aerosol modelling

$$\rho_{ToL}(\theta_s, \theta_v, \phi, \tau) = \sum_{i=0}^{3} k_i f'_i(\theta_s, \theta_v, \phi, \tau)$$

Surface contribution

$$f'_{i=0,2}(\theta_{s},\theta_{v},\phi,\tau) = \frac{T_{a}(\theta_{s},\tau)T_{a}(\theta_{v},\tau)}{1-S_{a}(\tau)\langle\rho_{s}\rangle} f_{i}(\theta_{s},\theta_{v},\phi)$$
$$T_{a}(\theta,\tau) = e^{-\tau/\mu} + \tau e^{-u-\nu\tau-w\tau^{2}}$$
$$S_{a}(\tau) = \tau \left(ae^{-\tau/\alpha} + be^{-\tau/\beta} + c\right)$$

u,v,w depend on $\mu \wedge g$ a,b,c, α , β are constant, parameterized by g Kokhanovsky et al . , 2005

Direct aerosols contribution

$$\underbrace{f_{3}^{\prime}(\boldsymbol{\theta}_{s},\boldsymbol{\theta}_{v},\boldsymbol{\phi},\boldsymbol{\tau})}_{f_{ms}} = \frac{\boldsymbol{\omega}_{0}\boldsymbol{P}(\boldsymbol{\Theta})}{4\boldsymbol{\mu}_{s}\boldsymbol{\mu}_{v}} \frac{1-e^{-m\tau}}{m\tau} f_{ms}(\tau)$$

$$f_{ms}(\tau) = 1 + \frac{\tau(7-\tau)}{5}$$

Rozanov and Kokhanovsky, 2006

$$f_{0}(\theta_{s},\theta_{v},\phi) = 1$$

$$f_{1}(\theta_{s},\theta_{v},\phi) = \frac{1}{2\pi} [(\pi-\phi)\cos\phi + \sin\phi] - \frac{1}{\pi} (\tan\theta_{s} + \tan\theta_{v} + \sqrt{\tan\theta_{s^{2}} + \tan\theta_{v^{2}} - 2\tan\theta_{s}\tan\theta_{v}\cos\phi})$$

$$f_{2}(\theta_{s},\theta_{v},\phi) = \frac{4}{3\pi} \frac{1}{\mu_{s} + \mu_{v}} \left[\left(\frac{\pi}{2} - \xi\right)\cos\xi + \sin\xi \right] - \frac{1}{3}$$

$$Roujean \ et \ al., 1992$$

Validation with AERONET stations in Europe

Validation with AERONET stations in Africa

LAND SURFACE ANALYSIS

59

60

65

67

Thank you !