

Meteosat Third Generation

jose.prieto@eumetsat.int

Meteosat Third Generation, Flexible combined imager (FCI)

CHANNEL	SPATIAL SAMPLING DISTANCE (SSD)
VIS 0.4	1.0 km
VIS 0.5	1.0 km
VIS 0.6	1.0 km; 0.5 km*
VIS 0.8	1.0 km
VIS 0.9	1.0 km
NIR 1.3	1.0 km
NIR 1.6	1.0 km
NIR 2.2	1.0 km; 0.5 km*
IR 3.8 (TIR)	2.0 km; 1.0 km*
WV 6.3	2.0 km
WV 7.3	2.0 km
IR 8.7 (TIR)	2.0 km
IR 9.7 (O ₃)	2.0 km
IR 10.5 (TIR)	2.0 km; 1.0 km*
IR 12.3 (TIR)	2.0 km
IR 13.3 (CO ₂)	2.0 km

NEW GEO IMAGING MISSIONS

Advanced Baseline Imager Flexible Combined Imager Advanced Himawari Imager Resoluti Ch. Centra Ch Centra λ Resolutio Ch Centra λ Resolutio λ width on No. width width n n λ (µm) (km) No λ (µm) (µm) (km) No λ (µm) (µm) (km) (µm) 0 1 0.44 0.06 1.0 0.47 0.04 1.0 1 0.47 0.05 1.0 2 0.51 0.04 1.0 2 0.51 0.02 1.0 Applications "Colloquial" **Proxy** instruments - $\lambda(\mu m)$ / Res (km) 3 0.64 1.0 (*0.5) 0.05 MODIS VIRS channel name SEVIRI 0.64 0.10 0.5 2 0.5 3 0.64 0.03 SLSTR 4 0.86 0.05 1.0 Blue aerosol, surface 1.0 4 0.86 0.02 1.0 3 0.86 0.04 **0.45**/0.75 **0.44**/1.0 features 5 0.91 0.02 1.0 0.55/0.5 0.55/0.75 0.55/0.5 Green aerosol, vegetation 6 1.38 0.03 1.0 0.02 2.0 4 1.38 Red fog, insolation, winds 0.64/3.0 0.65/0.25 0.64/0.37 0.67/0.5 7 1.61 0.05 1.0 5 5 1.61 0.06 1.0 5 1.61 0.02 2.0 Veggie vegetation, winds 8 2.25 0.05 1.0 (*0.5) 0.81/3.0 0.86/1.0 0.87/0.37 0.86/0.5 6 2.25 0.05 2.0 6 2.25 0.02 2.0 Low-Level WV water vapour, winds 9 3.80 0.40 2.0 (*1.0) 5 7 3.90 0.20 2.0 3.88 0.22 2.0 Cirrus thin cirrus 10 0.91/1.0 6.30 1.00 2.0 8 8 0.37 2.0 6.19 0.80 2.0 6.24 NIR Phase cloud phase, snow/ice 1.38/1.0 1.38/0.75 1.38/0.5 9 6.95 0.40 2.0 9 6.94 0.12 2.0 Particle Size particle size. 1.64/3.0 1.64/0.5 1.61/0.37 1.61/0.5 11 7.35 0.50 2.0 vegetation 10 7.34 0.20 2.0 10 0.17 5 7.34 2.0 12 8.70 0.40 2.0 Fire microphysics, fires 2.25/0.75 2.25/0.5 11 8.50 0.40 2.0 11 8.59 0.32 2.0 13 9.66 0.30 2.0 Upper-Level WV, winds, rainfall 3.92/3.0 3.75/1.0 12 9.61 0.40 2.0 3.74/0.37 3.74/1.0 12 9.64 0.18 2.0 WV 0.70 14 10.50 2.0 (*1.0) 5 13 10.35 0.50 2.0 13 10.40 0.30 2.0 Mid-Level WV WV, winds, rainfall 6.25/3.0 14 11.20 0.80 2.0 14 11.23 0.20 2.0 Lower-Level WV. winds. SO2 6.72/1.0 15 12.30 0.50 2.0 wv 15 12.30 1.00 2.0 15 12.38 0.30 2.0 16 13.30 0.60 2.0 7.35/3.0 7.33/1.0 Cloud-Top cloud phase, SO2 16 13.30 0.60 2.0 16 13.28 0.20 2.0 Phase 8.70/3.0 8.55/1.0 8.55/0.75 2.5UV Ozone total O3, turbulence Visible Infrared ► 9.66/3.0 9.73/1.0 Clean IR SST, clouds temp 10.8/3.0 **11.0**/1.0 10.8/0.75 10.8/1.0 Dirty 18 ANDI: SST, clouds temp, 11.5/0.37 $(W/m^2/nm)$ rainfal 5 Sunlight without atmospheric absorption 10 min 0.5 - 2.0 12.0/3.0 **12.0**/1.0 12.0/0.75 12.0/1.0 km 13.4/3.0 13.3/1.0 2000 × 2.5 min 0.5 - 2.0 1000 km 5778K blackbody 1000 x 2.5 min 0.5 - 2.0 1000 Irradiance km 0.5 min 0.5 - 2.0 Sunlight at sea level ӉO EUMETSAT Atmospheric 0 HO absorption bands EUMETSAT HO CQ HO 0 1250 1500 1750 250 500 750 1000 2000 2250 2500

IMAGING

Wavelength (nm)

Meteosat Third Generation, Infrared sounder (IRS)

- Four separate LAC zones are defined and scanned sequentially
- One LAC is acquired within 15 minutes, consisting of overlapping dwells following a step and stare scan pattern.
- Each dwell consists of 160x160 pixels (spectral soundings), with 4 km spatial sampling distance at nadir.
- Europe (LAC4) is observed every 30 minutes
- MWIR: (4.44–6.25 μm) and LWIR: (8.26–14.70 μm).

Platform	Proxy instrument -	Proxy instrument -	Infra-Red Geostationary Interferometric IRS		
			MTG-S	Feng-Yun-4	
Orbit	LEO	LEO	GEO	GEO	a she
Description	Interferometer with 8461 channels, with one embedded IR imaging channel	Interferometer with three IR bands, 1305 channels in initial operation mode. Future operation mode will have 2211 channels with the same full spectral resolution in all three bands	Interferometer with large detector arrays for simultaneous sounding of more pixels	MWIR/TIR interferometer with large detector arrays for simultaneous sounding of more pixels. 913 channels on the first flight unit, 1188 on follow-on flight units.	
Scanning technique	Cross-track: 30 steps of 48 km ssp, swath 2130 km - Along-track: one 48- km line every 8 s	Cross-track: 32 steps of 48 km s.s.p., swath 2200 km - Along-track: one 48- km line every 8 s	Mechanical, bi-axial, 3-axis stabilised satellite, step-and-dwell of a detector matrix	Mechanical, bi-axial, 3-axis stabilised satellite, step-and-dwell of a detector matrix.	
Resolution	4 x 12-km IFOV close to the centre of a 48 x 48 km2 cell (average sampling distance: 24 km)	3 x 3 14 km IFOV covering a 48 x 48 km2 cell (average sampling distance: 16 km)	4.0 km	Prototype flight 16 km, follow-on 8 km, at s.s.p Supporting VIS: 2 km at s.s.p.	
Coverage /Cycle	Near-global coverage twice/day	Near-global coverage twice/day	Full disk in 60 min. Limited areas in correspondingly shorter time intervals	China area (5000 km x 5000 km) in 67 min. Mesoscale area (1000 km x 1000 km) in 35 min	

EUMETSAT

OUNDING

5

Meteosat Third Generation, Lightning imager (LI)

Events — what the instrument measures, a triggered pixel in the detector grid Groups — neighbouring events in the same integration period (1 ms), representing a lightning stroke Flashes — collection of groups in temporal and spatial vicinity (XX km, YY milliseconds), representing a lightning flash

The MTG-I LI instrument will complement the NOAA Geostationary Lightning Mapper (GLM) on the GOES-R and the GOES-S satellites and CMA Lightning Mapper onboard the FY-4 satellite series.

Spectral response of the forest under (drought and) thermal stress

jose.prieto@eumetsat.int

France, 10March

24May

Colour scale

Average or minimum

Spain 6April 22May 2010

Suspicion based on imagery is not enough

Hipothesis: "too dry"

4-9 (vertical) vs (horizontal) 9 4-9 (v

> Confirmation or refusal through statistical analysis

Correction of the **display** technique that generated the wrong assumption

The two images are identical, just differently enhanced or processed

Evolution indicators from albedos and brightness temperatures

Daily cycles for different soils

Figure 2: Daily evolution of 3.9 and 10.8µm temperatures for three Iberian locations.

Comparison of 1.6µm and 0.8µm

Channel reflectivities on soil

2007-09-01 15:12

In-conclusions

- Peaks due to **cloud** (mainly in the middle of the period) blind the interpretation of soil status.
- Promising soil *characterisation* and soil *state* estimates from 3.9µm-10.8µm and 1.6µm-0.8µm.
- Insufficient knowledge on **emissivities**, which reflect better than LST the soil state or soil moisture.
- Statistically desirable a comparison for longer periods: **several summer** or drought seasons.
- Need of precipitation series to validate conclusions.
- Intuitive use of evolution RGBs for seasonal and inter-seasonal soil analysis.

Evolution RGB maximum

IR 10.8µm evolution product 24 Jun- 28 Jul 2019 (3 sub-periods) Ground temperature