Insights from two decades of developing satellite-based fire climate data records and their use and abuse

> Louis Giglio University of Maryland 6th SALGEE Workshop Darmstadt, Germany October 2019

Presentation Structure

- History/Introduction
 - Emphasis on long-term fire monitoring sensors
 - MODIS
 - VIIRS
 - Active Fire + Burned Area
- Use and Misuse

Satellite-Based Fire Products

- Active Fire
- Burned Area

Active Fire Products

- Identify where fires are actively burning at time of satellite overpass (and implicitly when they are burning)
- Possibly provide **additional information** about fires at time of satellite overpass
 - Intensity, average temperature, instantaneous size, rate of combustion, injection height, etc.

Whitewater-Baldy Fire Complex New Mexico, 23 May 2012

25

km

Burned Area Products

- Map spatial extent of post-fire burn scars over a particular time period
 - Approximate date of burn
- Potentially provide additional information about the area that burned
 - Combustion completeness

Some History

- Before MODIS, focus was largely on active fire detection
- Many different satellite sensors
 AVHRR, ATSR, VIRS, DMSP, GOES
- Decent fire detection requires very specialized sensors
 - Exploit differential increase of black body radiance at 4 μm and 11 μm
 - Annoy other users not interested in fire!
 - Fire not "on the radar"

Tropical Rainfall Measuring Mission

- Nov. 1997 June 2015
- Orbit precesses to capture diurnal variability of tropical rainfall
- Visible and Infrared Scanner (VIRS)
 - 5 channels (0.63, 1.6, 3.8, 10.8, 12.0 μm)
 - 2.1 km resolution

Two-Day Coverage

TRMM VIRS Fire Detection

VIRS 0.63 µm channel with active fire mask overlaid in red.

Northern Australia 29 August 1999

Giglio (2008)

MODIS

- One of the few Earth Observation sensors built with fire observation capabilities
 - Spectral bands
 - specifically for observing active fires
 - useful for observing burned areas
 - Accurate and reliable calibration & geolocation
- Dedicated 1 km fire bands
 - Channel 21: 3.96 μ m, \approx 500 K saturation
 - Channel 22: 3.96 μm, ≈ 330 K sat. (multi-purpose)
 - Channel 31: 11.0 μ m, \approx 400 K saturation

Terra MODIS Peak Fire Month

Giglio et al. (2006)

McCarty et al. (2007)

Fire Radiative Power (FRP)

- Instantaneous rate of emission of electromagnetic energy released by combustion
 - Not all fire energy is released through this way
- Can be retrieved via remote sensing using a single ~4 μm channel
 - Exploits serendipitous characteristics of the Planck function
 - Kaufman et al. (1998), Wooster et al. (2003)

FRP Rationale

- Measure of fire intensity
 - This in itself has some value
- Proportional to rate of combustion (*MT*⁻¹) of fuel
- Integrating FRP over time yields *fire radiative* energy (FRE)
- FRE is proportional to the total mass of fuel consumed during combustion

FRP Rationale

- FRE offers an appealing alternative to inventory-based methods for estimating fire emissions
 - Inventory-based methods require spatially-explicit maps of fuel load and combustion completeness

Small grassland test fires observed with ground-based mid-infrared camera.

Roberts et al. (2005)

Terra MODIS Mean Fire Radiative Power

Giglio et al. (2006)

Boreal forest fires burn less intensely in Russia than in North America

M. J. Wooster¹ and Y. H. Zhang^{1,2}

Received 22 June 2004; revised 18 August 2004; accepted 10 September 2004; published 26 October 2004.

Global Fire Regimes

Chuvieco et al. (2008)

VIIRS

- Visible Infrared Imaging Radiometer Suite (VIIRS)
- On Suomi-NPP and JPSS satellites
 - S-NPP launch 25 October 2011
- 22 bands
 - 750 m and 375 m spatial resolution
- Multi-agency JPSS legacy
 - -\$\$\$

complicated development and uptake of products

VIIRS Active Fire Data Status

- NASA 750m product
 - Based on C6 MODIS fire algorithm
 - Running at Land SIPS (≈12h latency), incomplete/inconsistent record due to changes in input data and data retention
 - Available through NASA (**VNP14** product) and NOAA (**AF_v1r0_npp** product)
 - Also available through IPOPP direct readout data processing package
- NASA 375m product
 - Builds on MODIS fire product, customized for VIIRS 375m data characteristics
 - Running at Land SIPS (~12h latency), incomplete/inconsistent archive due to changes in input data and data retention
 - Available through NASA (VNP14IMG product)
 - Running at LANCE, feeding FIRMS/Worldview since Dec 2015
 - Also available through through IPOPP direct readout data processing packages
- Data reprocessing tasks being implemented at NASA and NOAA
 - Should provide complete/consistent data record

S-NPP/VIIRS 375 x 750m x Aqua/MODIS 1km Fire Detection Data Quick Comparison

Date_Time (UTC)	20131026 15:12	20131103 03:05	20131106 03:50
20131023 14:27 📒	20131027 03:37 📒	20131103 04:42 📒	20131106 15:07
20131024 04:29	20131027 14:54 🦲	20131103 14:23 🗧	20131107 03:26
20131024 14:10	20131028 14:36 🧧	20131103 16:05	20131107 14:49
20131024 15:52	20131031 03:58 📒	20131104 04:25	20131108 04:51
20131025 04:12	20131101 14:58 📒	20131104 15:42	20131108 14:26
20131025 15:29	20131102 03:23 📒	20131105 04:07 🗧	20131109 04:34
20131026 03:54	20131102 14:40 📒	20131105 15:24	

Date_Time (UTC) 20131026 03:47 20131031 04:05 20131104 03:41 20131024 03:59 20131026 14:48 20131102 03:53 20131106 03:29 20131024 03:59 20131026 14:48 20131102 03:53 20131106 03:29 20131024 03:59 20131027 04:30 20131102 14:54 20131102 04:12 20131025 04:42 20131028 03:35 20131103 04:36 20131107 15:13 20131102 04:00 20131102 04:00 20131109 04:00 20131109 04:00

S-NPP/VIIRS 375 m

S-NPP/VIIRS 750 m

Aqua/MODIS 1 km

MODIS x VIIRS Mid-IR Spectral Responses & Atmospheric Transmittance

Atmospheric transmittance

W. Schroeder

Atmospheric Correction of MODIS and VIIRS

Implementing approach to correct Level 2, 3, 4 products in support of data continuity Currently running MODTRAN + MERRA-2 (0.625° x 0.5°)

Before atmospheric correction

After atmospheric correction

W. Schroeder

Long-Term ("Climate") Studies

- Often necessitate multiple satellite sensors
- Active fire signal generally sensitive to even small differences
 - Spatial resolution + temporal sampling
- Potentially FRP
 - Record commences with MODIS (late 2000)
- Burned area data often most appropriate
 - Continuity + Consistency
 - Cross-calibration generally more straightforward

Active Fire Detections (Millions)

Year	Terra + Aqua MODIS 1 km	S-NPP VIIRS 750 m	S-NPP VIIRS 375 m
2018	4.21	9.22	38.26
2017	4.48	9.78	40.02
2016	4.44	10.01	40.60
2015	4.77	10.48	42.79
2014	4.46	9.90	40.20
2013	4.25	9.56	38.64

Giglio (2008)

Geostationary Satellite Active Fire Products

- Advanced Baseline Imager (ABI) on board NOAA GOES-16 (launched November 2016)
- Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on board ESA Meteosat Second Generation (MSG) satellite series (multiple launch dates)

	GOES-16 ABI	MSG SEVIRI	
Product	Fire Detection and Characterization (FDC; Schmidt et al., 2012)	Fire Radiative Power (FRP-PIXEL; Wooster et al., 2015)	
Spatial Resolution	2km at nadir	3km at nadir	
Temporal Resolution	Full Disk: 15 minutes CONUS: 5 minutes	Full Disk: 15 minutes Europe: 5 minutes	
Active Fire Product Values	10(30) = processed 11(31) = saturated 12(32) = cloudy 13(33) = high prob. 14(34) = med prob. 15(35) = low prob.	Fire Confidence (0 – 100%)	

Solid, dashed, dotted lines indicate the boundaries at which the area of the pixel footprint grows to a factor of 2, 4, and 8 times larger than at the sub-satellite point.

Geostationary Fire Product Validation Summary

14,032 LS8 images were coincident* with MSG
5,760 LS8 images were coincident* with GOES-16
* Within 5 (or 6) minutes separation from mid-scan

	GOES-16 ABI FDC	MSG SEVIRI FRP-PIXEL
Validation Date Range	18 Jul 2018 – 30 Sep 2018 (87 days)	1 Nov 2017 – 28 Feb 2018 (120 days)
Total number of pixels sampled (includes fire/non-fire/land/water/clouds)	43,113	300,945
Total number of <u>non-fire</u> pixels with coincident reference fire activity (omissions)	36,384 (84%)	295,227 (98%)
Pixels flagged as fire <u>with</u> coincident reference fire activity (true positives)	1527 (23%)	5,261 (92%)
Pixels flagged as fire <u>without</u> coincident reference fire activity (false positives)	5214 (77%)	457 (8%)

Geostationary Fire Product Validation Summary

Int J Appl Earth Obs Geoinformation 83 (2019) 101928				
	Contents lists available at ScienceDirect			
3-22	Int J Appl Earth Obs Geoinformation			
ELSEVIER	journal homepage: www.elsevier.com/locate/jag			
Validation of GOES-16 ABI and MSG SEVIRI active fire products J.V. Hall ^{a,*} , R. Zhang ^a , W. Schroeder ^b , C. Huang ^a , L. Giglio ^a ^a University of Maryland, Department of Geographical Sciences, College Park, MD, USA ^b NOAA/NESDIS/OSPO Satellite Analysis Branch, College Park, MD, USA				
coincident refer	ence fire activity (omissions)	36,384 (84%)	295,227 (98%)	
Pixels flagged as fire act	fire <u>with</u> coincident reference ivity (<mark>true positives</mark>)	1527 (23%)	5,261 (92%)	
Pixels flagged reference fir	as fire <u>without</u> coincident e activity (false positives)	5214 (77%)	457 (8%)	

Long-Term ("Climate") Studies

- Often necessitate multiple satellite sensors
- Active fire signal generally sensitive to even small differences
 - Spatial resolution
 - Temporal sampling
- Burned area data records generally more appropriate
 - Continuity + Consistency
 - Cross-calibration generally more straightforward
Geophysical Research Letters

RESEARCH LETTER

10.1029/2019GL083469

Key Points:

- Burned area in Africa declined by 18.5% (51.9 Mha) from 2002–2016
- The majority of the decline (35.4 Mha) occurred in noncropland areas
- 71.2% of the decline in noncropland burned area can be explained by changes in effective rainfall

Supporting Information:

- Supporting Information S1
- Table S1
- Table S5
- Table S6

Correspondence to:

M. Zubkova, mzubkova@uidaho.edu

Changes in Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers

Maria Zubkova¹ (0), Luigi Boschetti¹ (0), John T. Abatzoglou² (0), and Louis Giglio³ (0)

¹Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA, ²Department of Geography, University of Idaho, Moscow, ID, USA, ³Department of Geographical Sciences, University of Maryland, College Park, MD, USA

Abstract While several studies have reported a recent decline in area burned in Africa, the causes of this decline are still not well understood. In this study, we found that from 2002 to 2016 burned area in Africa declined by 18.5%, with the strongest decline (80% of the area) in the Northern Hemisphere. One third of the reduction in burned area occurred in croplands, suggesting that changes in agricultural practices (including cropland expansion) are not the predominant factor behind recent changes in fire extent. Linear models that considered interannual variability in climate factors directly related to biomass productivity and aridity explained about 70% of the decline in burned area in natural land cover. Our results provide evidence that despite the fact that most fires are human-caused in Africa, increased terrestrial moisture during 2002–2016 facilitated declines in fire activity in Africa.

GLOBAL FIRE ACTIVITY

A human-driven decline in global burned area

N. Andela,^{1,2*} D. C. Morton,¹ L. Giglio,³ Y. Chen,² G. R. van der Werf,⁴ P. S. Kasibhatla,⁵ R. S. DeFries,⁶ G. J. Collatz,¹ S. Hantson,⁷ S. Kloster,⁸ D. Bachelet,⁹ M. Forrest,¹⁰ G. Lasslop,⁸ F. Li,¹¹ S. Mangeon,¹² J. R. Melton,¹³ C. Yue,¹⁴ J. T. Randerson²

Fire is an essential Earth system process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite data sets. We found that global burned area declined by $24.3 \pm 8.8\%$ over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting that they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.

MODIS Burned Area Product

• MCD64A1

- 500 m, daily
- MODIS collection 5.1 and 6
- Maps burns using surface reflectance + active fire information
- November 2000 present

MODIS Collection 6 Burned Area Products

MCD64A1	500-m Monthly
MCD64A1-based GIS Products (SCF)	Shapefiles + 500-m GeoTIFF
MCD64CMQ (SCF)	0.25° Monthly

August 2016 C6 MCD64A1 Global Browse

http://landweb.nascom.nasa.gov/cgi-bin/browse/browseMODIS.cgi

VIIRS Collection 1 Burned Area Products

VNP64A1	500-m Monthly
VNP64A1-based GIS Products (SCF)	Shapefiles + 500-m GeoTIFF
VNP64CMQ (SCF)	0.25° Monthly

VIIRS Burned Area Product Status

- Adapted MCD64 production code to use VIIRS data
 - 750-m versus 375-m bands
- Retained 500-m grid for MODIS compatibility
- Tuned* operational code finally running in NASA land production system
 - Collection 1 product generated September 2019
- Collection 2 reprocessing imminent

2017 Cumulative Burned Area MODIS Tile h31v10 (Northern Australia)

MODIS

VIIRS

Monthly Global Burned Area

Date

Cloud Mask Example VNP09GHKM.A2016232.h12v03.001.2019133144101

"...Use and Abuse"

"fumulative" or "Accumulated" FRP

https://www.globalfiredata.org/forecast.html

Global Maps Articles

Blogs

ڬ Uptick in Amazon F	ire Activity	in 2019
----------------------	--------------	---------

August 19, 2019

Topics

<

Ð

https://www.earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019

VIIRS Fire Radiative Power (TW)

https://www.earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019

"Cumulative" or "Accumulated" FRP

Plot: Cumulative FRP vs. Cumulative Fire Pixels

- No meaningful physical interpretation
 - Analogous to"cumulative speed"
- Largely duplicates

 information provided by
 cumulative fire pixel
 counts

https://www.globalfiredata.org/forecast.html

https://www.globalfiredata.org/forecast.html

RNAL OF GEOPHYSICAL RESEARCH, VOL. 117, G04012, doi:10.1029/2012JG002128, 2012

Global burned area and biomass burning emissions from small fires

J. T. Randerson,¹ Y. Chen,¹ G. R. van der Werf,² B. M. Rogers,¹ and D. C. Morton³

Received 9 July 2012; revised 10 October 2012; accepted 11 October 2012; published 11 December 2012.

[1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of

Earth Syst. Sci. Data, 9, 697–720, 2017 https://doi.org/10.5194/essd-9-697-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

Global fire emissions estimates during 1997–2016

Guido R. van der Werf¹, James T. Randerson², Louis Giglio³, Thijs T. van Leeuwen^{4,a}, Yang Chen², Brendan M. Rogers⁵, Mingquan Mu², Margreet J. E. van Marle^{1,b}, Douglas C. Morton⁶, G. James Collatz⁶, Robert J. Yokelson⁷, and Prasad S. Kasibhatla⁸

¹Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
 ²Department of Earth System Science, University of California, Irvine, CA 92697, USA
 ³Department of Geographical Sciences, University of Maryland, MD 20742, USA
 ⁴SRON Netherlands Institute for Space Research, 3584 CA Utrecht, the Netherlands
 ⁵Woods Hole Research Center, Falmouth, MA 02540, USA
 ⁶Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
 ⁷Department of Chemistry, University of Montana, Missoula, MT 59812, USA
 ⁸Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
 ^anow at: VanderSat BV, 2011 VK, Haarlem, the Netherlands
 ^bnow at: Deltares, 2629 HV, Delft, the Netherlands

24 in-burn fire pixels

3 out-of-burn fire pixels

MCD64A1 burned patch

Problems

- Ignores impact of MODIS triangular response
- Ignores impact of resampling error associated with MODIS sinusoidal grid
 - Moves edges and small features, alters shapes
- Ignores impact of compositing
 - Can move, shrink, expand features
- Others
 - Particularly applicable to cropland

Effect of MODIS Triangular Response

- MODIS triangular response boosts out-of-burn fire counts much more significantly than inburn fire counts
- ~20% of out-of-burn fire pixels are "doublets"

red = in-burn MODIS fire pixel, green = out-of-burn MODIS fire pixel

GFED4s Burned Area

$$A_{4s}(i,t,v) = A_{MCD64A1}(i,t,v) + FC_{out}(i,t,v) \times a_{r,s,v,y} \times \gamma_{r,s,v,y}$$

 0.25° grid cell *i*, month *t*, vegetation class *v*, region *r*, year *y*, season *s*

 $\alpha_{r,s,v,y}$ = area burned per "in-burn" fire pixel

$$\gamma(r, s, v, y) = \frac{dNBR_{out}(r, s, v, y) - dNBR_{control}(r, s, v, y)}{dNBR_{in}(r, s, v, y) - dNBR_{control}(r, s, v, y)}, \quad (4)$$

GFED4s Burned Area

$$A_{4s}(i,t,v) = A_{MCD64A1}(i,t,v) + FC_{out}(i,t,v) \times a_{r,s,v,y} \times \gamma_{r,s,v,y}$$

0.25° grid cell *i*, month *t*, vegetation class *v*, region *r*, year *y*, season *s*

 $\alpha_{r,s,v,y}$ = area burned per "in-burn" fire pixel

$$\gamma(r, s, v, y) = \frac{dNBR_{out}(r, s, v, y) - dNBR_{control}(r, s, v, y)}{dNBR_{in}(r, s, v, y) - dNBR_{control}(r, s, v, y)},$$

Strongly affected by resampling error!

(4)

"Clean" Small-Fire Test Case (Rare)

Burned evening of 12 March 2013.

http://wamu.org/news/13/08/06/suspects_indicted_in_dozens_of_eastern_shore_arson_cases

Whispering Pines Hotel Fire

- Detected by Terra MODIS
 - 1 fire pixel
- Croplands, cropland/natural mosaic
- Actual area burned ~460 m² (0.046 ha)
- GFED4 (MCD64A1): 0 ha
- GFED4s: 45.09 ha → 980× too high

dNBR PDFs:

red: active fires within burns orange: active fires outside of burns blue: unburned/no fires

Randerson et al. (2012)

1-year sample from a single MODIS tile.

(CEAM)

Only a 44% chance that center grid cell will contain the small fire located within a 1-km fire pixel.

Regional Gamma Values
Earth Syst. Sci. Data, 9, 697-72 https://doi.org/10.5194/essd-9-6 © Author(s) 2017. This work is the Creative Commons Attributi

Science

997-2016

euwen^{4,a}, Yang Chen², glas C. Morton⁶, hatla⁸

terdam, the Netherlands A 92697, USA 0742, USA Netherlands

elt, MD 20771, USA 812, USA 7708, USA

Figure 1. Average burned area over 2003–2016 from (a) MODIS surface reflectance imagery (MCD64A1) and (b) small fire burned area. Panel (c) shows the small fire percentage of total burned area.

	Release	Burned Area Data Set	Global/Regional
	TBD	Fire CCI OCLI+SLSTR	G
$\overline{3}$	7/2019	Fire CCI MODIS v5.1	G
	3/2019	Fire CCI LT v1.0	G
	11/2018	Fire CCI SFD v1.1 (Africa)	R
	10/2018	Fire CCI SA v1.0 (South America)	R
	3/2018	Fire CCI MODIS v5.0	G
	2018	GABAM Long et al.	G
	2018	RAPT Mithal et al. (Tropical Forest)	R
	2017	USGS BA ECV	R
	2017	Fire CCI (Indonesia)	R
	2017	NASA MODIS MCD64A1 C6	G
	2016	Fire CCI v4.1 MERIS	G
	2015	GFED4.1s	G
	2014	Fire CCI v3.1 MERIS	G
	2013	NASA MODIS MCD45A1 C5.1	G
	2012	NASA MODIS MCD64A1 C5.1 / GFED4	G
	2010	GFED3	G
	2008	NASA MODIS MCD45A1 C5	G
	2008	GIO-GL1	G

Contributing Factors

- Google Earth Engine
- Machine Learning
- Rise of rapid-publication journals
 - MDPI
 - Peer review often compromised

SHARE Open-access journal editors resign after alleged pressure to publish mediocre papers

By Jop de Vrieze | Sep. 4, 2018 , 3:45 PM

All 10 senior editors of the open-access journal *Nutrients* resigned last month, alleging that the publisher, the Multidisciplinary Digital Publishing Institute (MDPI), pressured them to accept manuscripts of mediocre quality and importance.

The conflict is familiar for many commercial open-access publishers: Because authors pay fees per published article (about \$1800 in the case of *Nutrients*), the publisher has an incentive to publish as many as possible. On the other hand, scientists prefer to publish in choosy, reputable journals, and academic journal editors want to maintain this quality.

On 15 August, the editor-in-chief of the journal, Jon Buckley, of the University of South Australia in Adelaide, received an email from MDPI announcing his replacement at the end of the year by someone who would "bring different ideas on board." Buckley says this was an excuse to push him aside because of his strict editorial policy. He resigned immediately, and nine other senior editors followed.

Received: 12 August 2019; Accepted: 1 September 2019; Published: 3 September 2019

Received: 29 July 2019; Accepted: 16 August 2019; Published: 30 August 2019

Received: 15 August 2019; Accepted: 24 August 2019; Published: 2 September 2019

Summary

- Users
 - Avoid cumulative FRP
 - Consider resampling error when focusing on subpixel phenomena
- Product Developers
 - Exercise restraint
 - Consistency is critical for long term studies
 - Eschew questionable journals