

Scientific Development for Operational Aerosol Products

Present and Future

Bertrand Fougnie

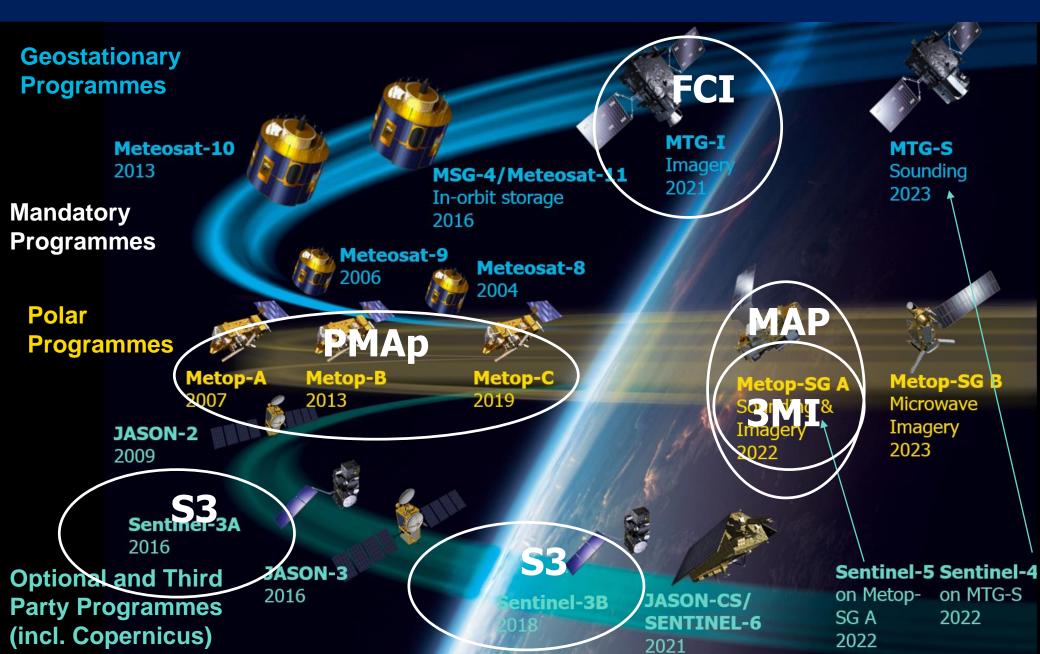
for the Cloud & Aerosol Team

Remote Sensing & Products Division

Summary

• The general picture

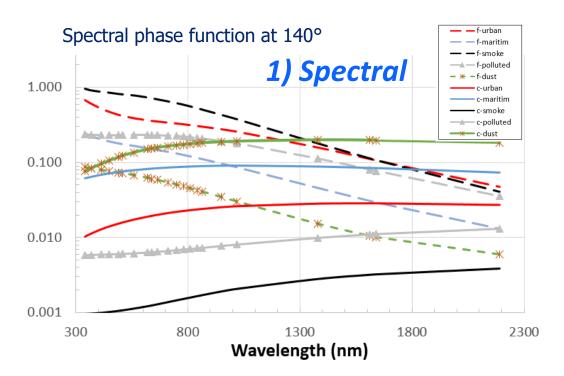
Aerosol characterisation: What's the challenge ?


• The aerosol product currently available

• The future aerosol products: What's coming ?

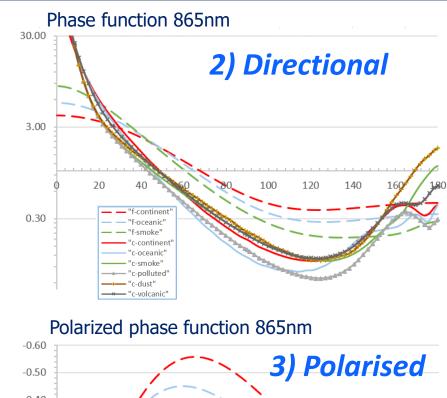
Conclusion remarks

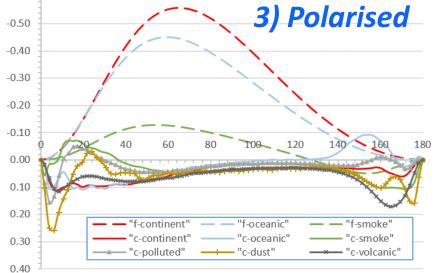
EUMETSAT missions: *current and future*


Most relevant sensors for the Aerosol characterisation

	Indicati	ve list (non ex	haustive) Dif	ferent maturity levels (dev/ope)		
	Satellite	Instrument*	Туре	Aerosol parameters		
	EPS	GOME-2	UV-VIS spectrometer	Absorbing index, aerosol height		
	EPS	РМАр	Hyper-instrument	AOD, model type		
	EPS	IASI	TIR spectrometer	Ash/dust detection, thickness & height		
	Sentinel-3	SLSTR	Dual-view scanner	AOD, fine mode		
	Sentinel-3	OLCI	X-spectral imager	AOD, model type		
	MSG	SEVIRI	GEO imager	d-AOD, Ash detection & height		
	MTG	FCI	GEO image	i-AOD, model, Ash detection & height		
	MTG	S4-UVN	UV-VIS spectrometer	Absorbing index, aerosol height		
	EPS-SG	S5-UVNS	UV-VIS spectrometer	Absorbing index, aerosol height		
	EPS-SG	IASI-NG	TIR spectrometer	Ash/dust detection, thickness & height		
Γ	EPS-SG	3MI	Polarimeter	AOD, model, fine mode, abs		
	EPS-SG	MAP	Hyper-instrument	Full characterisation		

What's the challenge ?


The aerosol optical properties



\rightarrow all depend on :

- Aerosol model (type fine/coarse, microphysics, size distribution, shape, absorption...)
 - Aerosol load (optical thickness)

What's the challenge ?

The measurement

\rightarrow all signatures are mixed in the observed signal

At first order (for the scattered part):

$$R_{aerosol}(\lambda, view) \sim \left[\begin{array}{c} \omega_o(\lambda) \cdot \tau(\lambda) \cdot P_{aerosol}(\lambda, view) \\ \end{array} \right]$$
where
$$\left\{ \begin{array}{c} \omega_o & \text{Single scattering albedo} \\ \tau & \text{Optical thickness} \\ P_{aerosol} & \text{Phase function} \end{array} \right.$$

Challenge = disentangle the contributors to retrieve aerosol parameters

→ The analysis of the information content is a prerequisite
 → This includes how the sensor/system is able to sample the spectral, the geometrical, and polarisation information
 → The larger, the better... but not only !

What's the challenge when using various sensors

- Provide aerosol products retrieved from different sensors
 - Aerosols are observed from different geometries
 - Aerosols are observed for different spectral ranges
 - \rightarrow Aerosol are not seen similarly
 - \rightarrow In general, the same aerosol characterisation cannot be extracted
 - \rightarrow The aerosol products (at least some of the parameters) may/will differ
- Provide aerosol products retrieved from the synergistic use of different sensors
 - Aerosols are observed through complementary geometries
 - Aerosols are observed for more spectral ranges
 - \rightarrow The conditions of observation are extended
 - \rightarrow The aerosol characterisation can be consolidated (performance) and/or extended

(number of parameters)

- \rightarrow The aerosol products are better:
 - more parameters can be provided
 - parameters can be retrieved more accurately

EPS (EUMETSAT Polar System)

- 3 LEO satellites : Metop-A (2007), Metop-B (2013), Metop-C (2019)
- 3 instruments for aerosol retrieval

GOME-2, AVHRR, IASI → hyper-instrument

Operational over ocean (provisional over land)

<u>Sentinel-3 (Copernicus)</u>

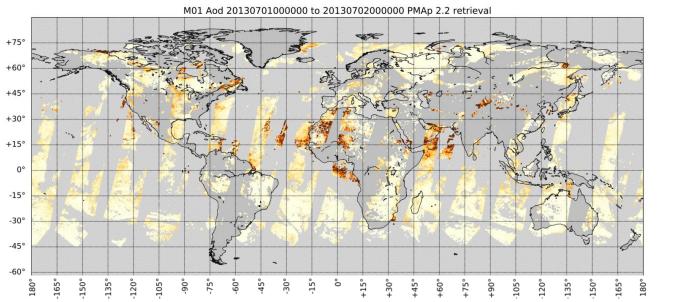
- 2 LEO satellites : S3-A (2016) and S3-B (2018)
- 2 instruments for aerosol retrieval

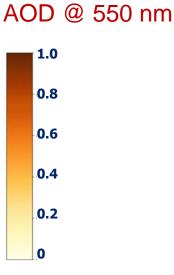
SLSTR, and OLCI

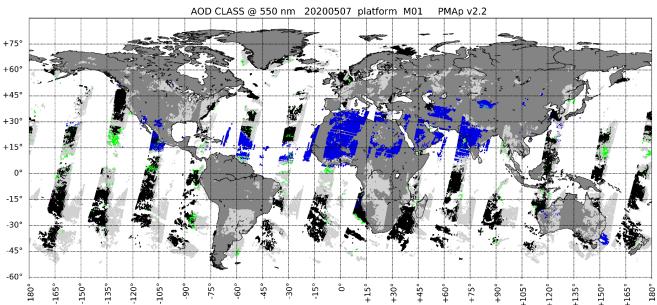
Very soon operational over ocean (provisional over land)

The hyper-instrument from EPS - on a nutshell

PMAp : Polar Multi-sensor Aerosol product from GOME-2, AVHRR and IASI


PMAp Main Updates

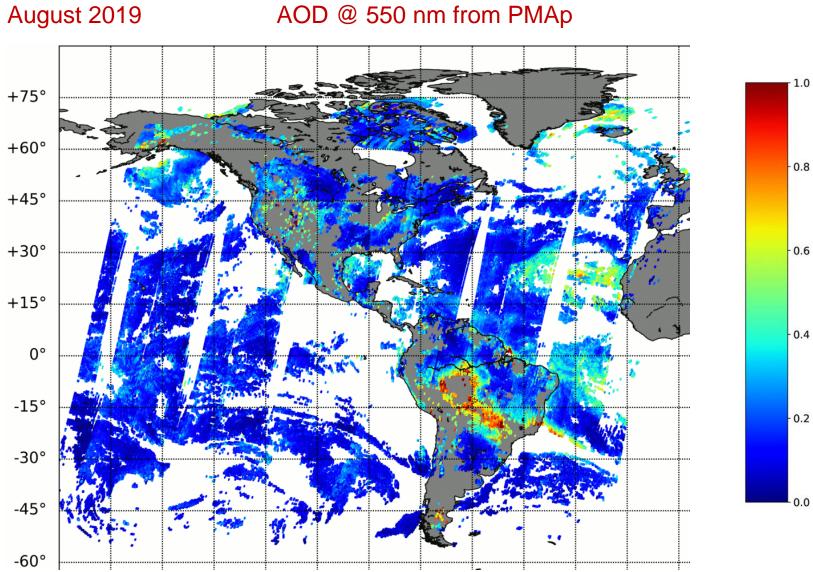

- Operational product, Currently Version 2.1.0 (Feb 2017)
 - Surface homogeneity test
 - Surface elevation correction function for Rayleigh scattering calculation
 - Surface reflectance database (LER v1.6) statically masked for more accurate land/water areas partition
 - Volcanic Ash/SO₂ class using thermal IR IASI measurement
- Next Release 2.2 coming very soon
 - GOME-2 PMDs L1 radiance correction for degradation (degradation + offset)
 - Surface reflectance database (LER) now based on MetopA & B
 - Improved detection and AOD quality for thick desert dust -in particular over bright surfaces and discrimination w.r.t. to water clouds (IASI spectrum)
 - Very good consistency between Metop-A, -B, and -C



The Polar Multi-sensor Aerosol Product Operational near-real time products from EPS/Metop

Parameters

Aerosol Class


fine mode coarse mode volcanic ash / thick dust volcanic ash with SO₂ undetermined

The Polar Multi-sensor Aerosol Product Operational near-real time products from EPS/Metop

PMAp-A/B/C = PMAp-D

- Tristar MetOp configuration → very good complementarity of PMAp A/B/C products
 - Remarkable global daily coverage : complementarity of the ground tracks (low loss due to sunglint)
 - Efficiency of the cloud decontamination, especially over ocean
 - Good consistency over dust events & Better identification of the inter-track residues

EPS (EUMETSAT Polar System)

- 3 LEO satellites : Metop-A (2007), Metop-B (2013), Metop-C (2019)
- 3 instruments for aerosol retrieval

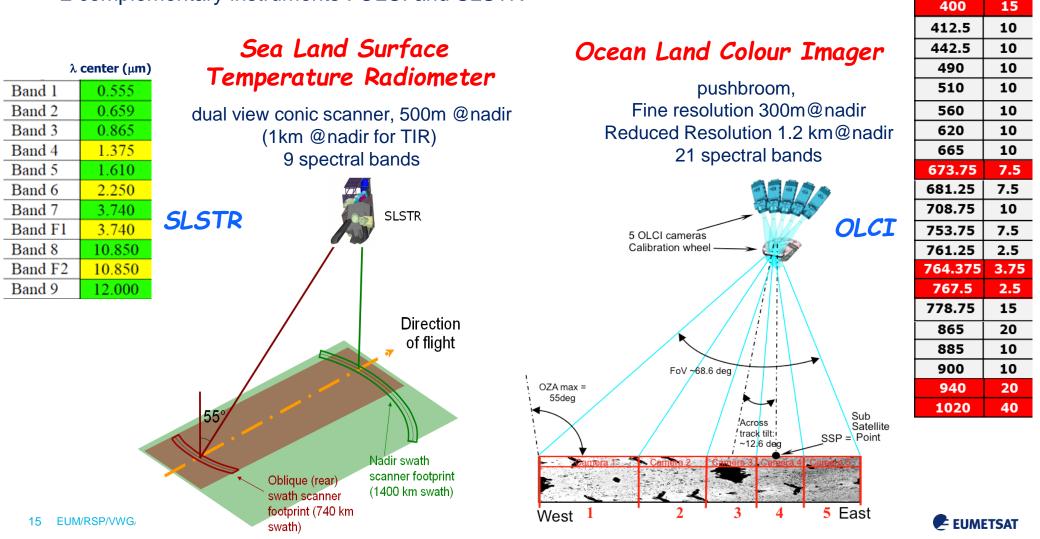
GOME-2, AVHRR, IASI → hyper-instrument

Operational over ocean (provisional over land)

Sentinel-3 (Copernicus)

- 2 LEO satellites : S3-A (2016) and S3-B (2018)
- 2 instruments for aerosol retrieval

SLSTR, and OLCI


Very soon operational over ocean (provisional over land)

Sentinel-3 sensors - on a nutshell

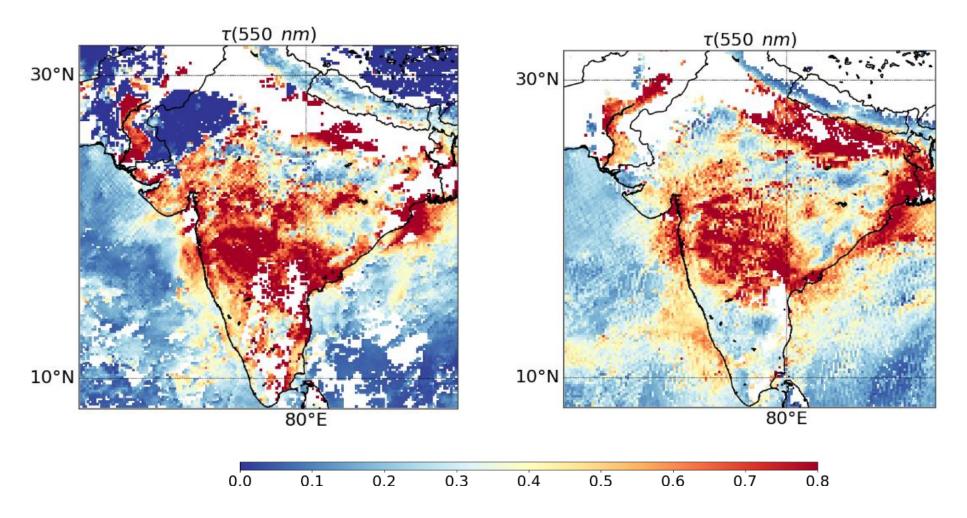
Sentinel-3 : Copernicus Mission

- Polar orbit at 10:00 ECT A in Feb. 2016, B in Apr. 2018
- 2 complementary instruments : OLCI and SLSTR

λ center Width

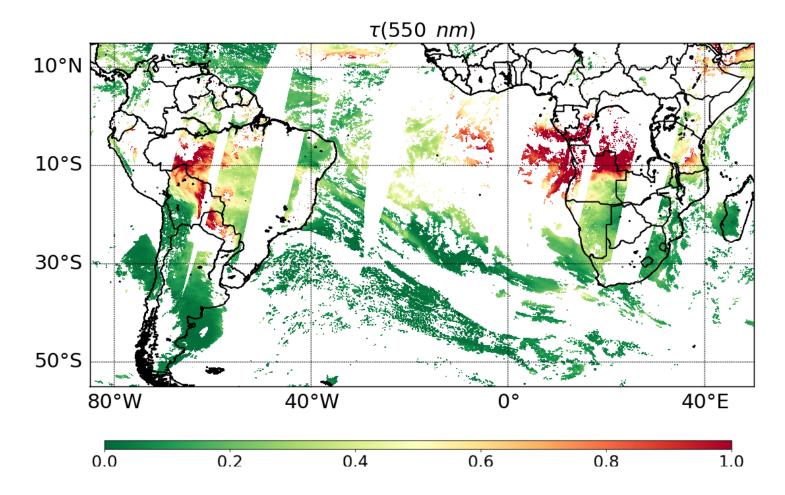
nm

nm


Aerosol Product from Sentinel-3 : SLSTR

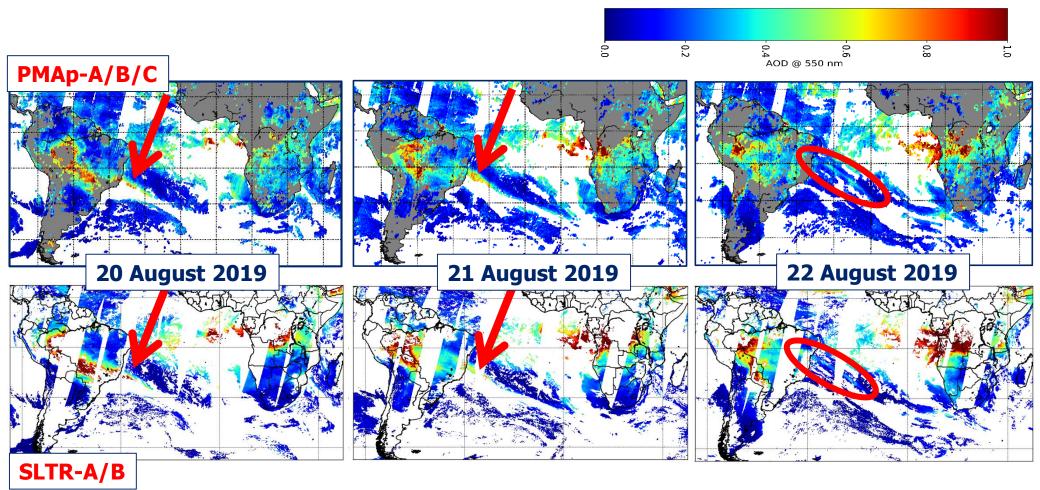
- Sentinel-3 / SLSTR
 - 5 spectral channels at 554, 659, and 868 nm, and 1.613, 2.255 um 4.5km resolution
 - dual-view instruments nadir + 50° oblique (ATSR 1&2, AATSR)
 - \rightarrow Very relevant for retrieval of AOD + model
- Baseline for the scientific approach (Univ. Swansea; North. et al. 1999)
 - Historically applied to dual-view instruments ATSR 1&2, AATSR (ESA CCI_aerosol project)
 - Aerosol retrieval with a physical based surface model Iterative optimization of AOD, aerosol model & surface reflectance
 - Over Land, the constraint is mostly based on the difference between dual-views
- Initial algorithm & Processor
 - Developed in the framework of S3 Mission Performance Centre (ESA contract)
- Additional developments by EUMETSAT:
 - Correction of the SLSTR mis-calibration for SWIR and oblique view
 - Addition of a spectral constraint (considering indexes like AFRI, NDVI)
 - Various refinement of the algorithm (dir/spec weigthing, improved filtering, tuning)
- First release of the product (version 2.0): coming mid-2020

Aerosol Product from Sentinel-3 : SLSTR


SLSTR 20-31 May 2020 MODIS

Aerosol Product from Sentinel-3 : SLSTR

22 August 2019 Sentinel-3A and -3B



AOD @ 550 nm from 5 Satellites!

PMAp- Metop-A/B/C Australia Bushfires – Smoke over South-Pacific 10°S 30°S 50°S 120°E 160°E 160°W 120°W 80°W 40°W SLTR-A/B AOD @ 550nm 0.2 0.4 0.6 0.8 1.0 0.0 10°S 30°S 50°S 160°E 160°W 120°W 80°W 120°E 40°W All 5 satellites: - Detect Dust gust over Australian desert on 11-12.01.2020

- Observe smoke transport across Pacific, with variable cloud-screening performance

AOD @ 550 nm from 5 Satellites!

Clouds located in the same spot AOD of the area ~1 (or higher) Cloud filtering is similar

Plume edge is observed AOD around 0.6-0.7 in both retrievals Cloud filtering is similar Also same AOD patterns in Brazil and west of Africa AOD of the plume ~0.4 in both retrievals

Products from future sensors

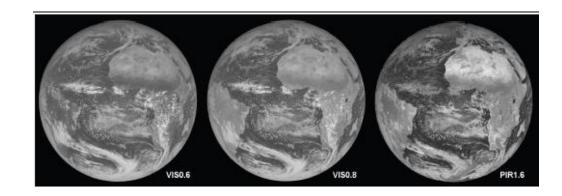
MTG (Meteosat Third Generation)

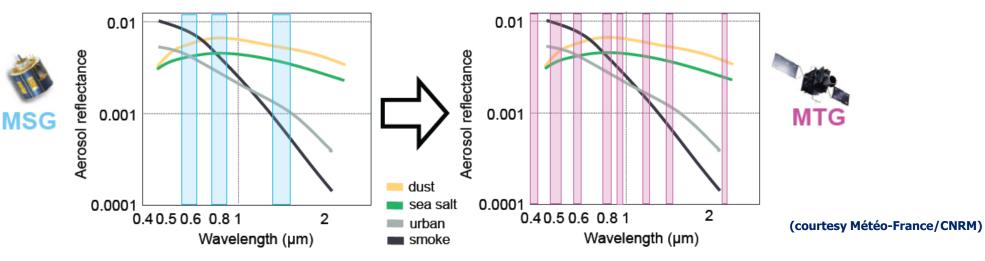
- 3 GEO satellites
- 1 instrument for aerosol retrieval FCI imager

EPS-SG (EPS Second Generation)

- 3 LEO satellites : Metop-SG on LEO at 9:30
- core instrument for aerosol : 3MI polarimeter
- 4 instruments for aerosol retrieval

3MI, Metimage, S5, IASI-NG \rightarrow hyper-instrument MAP

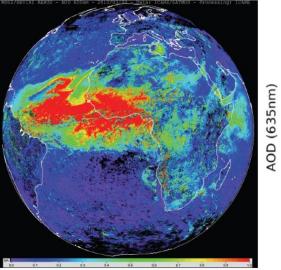

GEO sensors SEVIRI and FCI – on a nutshell

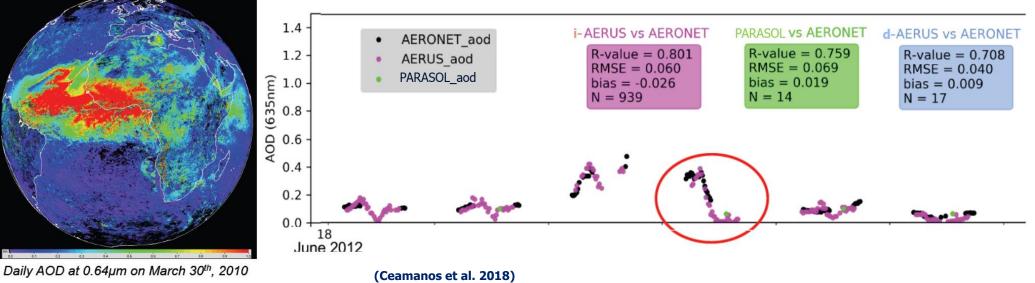

MSG/SEVIRI:

- full disk every 15'
- 3 reflective solar bands
- 3km@nadir

MTG/FCI:

- full disk every 10'
- Rapid scan service (1/4th of full disk every 2.5')
- 8 reflective solar bands
- 1km@nadir

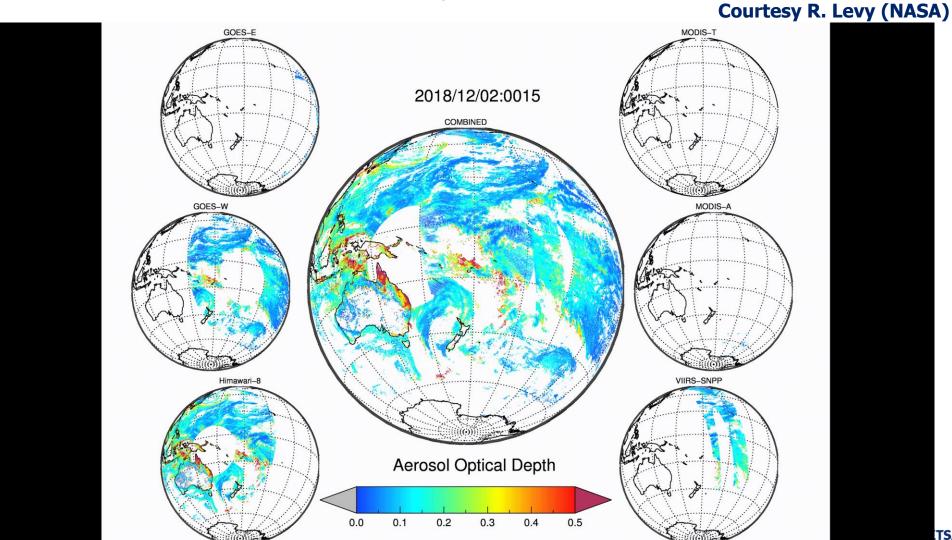



Aerosol Product from MSG : SEVIRI

- Simultaneous aerosol-surface retrieval with AERUS-GEO (Carrer et al., 2010; 2014)
- Daily retrieval for MSG/SEVIRI available in ICARE
- Instantaneous retrieval (up to 96/day) under development \rightarrow i-AERUS
- good estimation of the AOD + reveal the diurnal variation that may be large
 - Difficulties for some geometries (backscattering) due to the aerosol model identification
- Operationally implementation foreseen in EUMETSAT for MTG/FCI
 - Spectral extension will allow the model identification

Daily AOD

Instantaneous AOD


EUMETSAT

EUM/RSP/VWG/20/1181654, v1 Draft, 22 June 2020 24

Aerosol Product from MTG : toward FCI

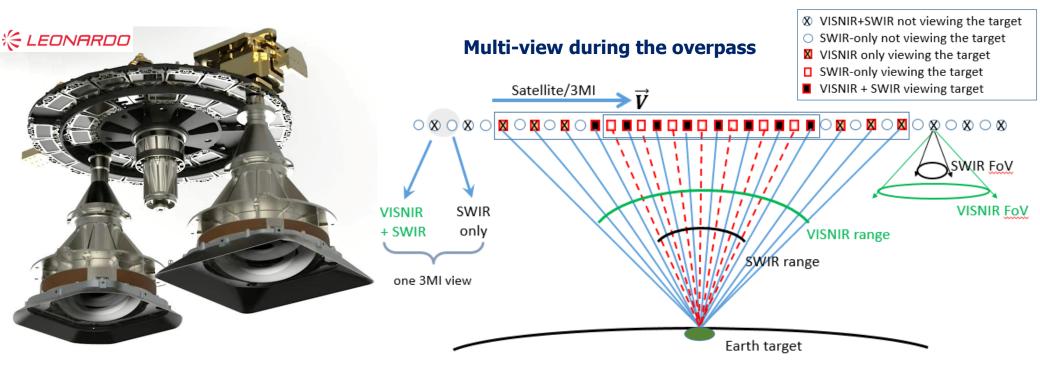
26

- Expectation: similar products as those already available (AHI, ABI)
 - Complementarity with other GEO, Synergy with LEO to be explored

Products from future sensors

MTG (Meteosat Third Generation)

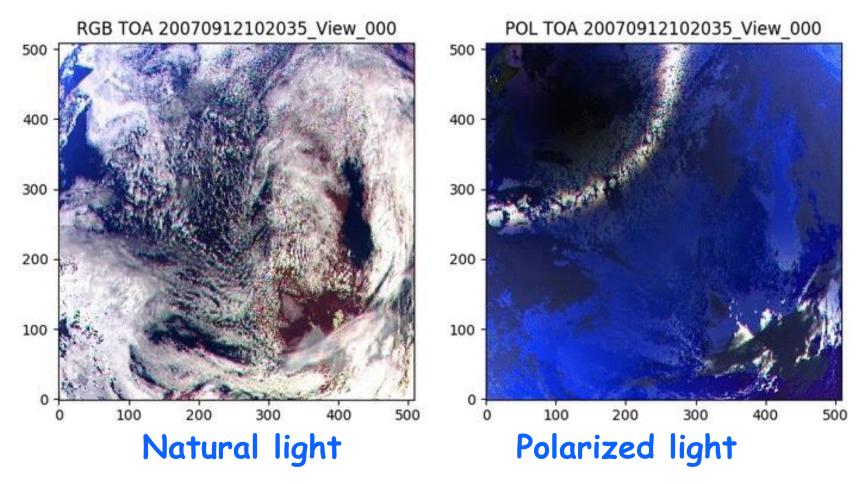
- 3 GEO satellites
- 1 instrument for aerosol retrieval
- FCI imager


EPS-SG (EPS Second Generation)

- 3 LEO satellites : Metop-SG on LEO at 9:30
- A core instrument for aerosol : the 3MI polarimeter
- 3 additional instruments to support the aerosol retrieval
 3MI + Metimage, S5, IASI-NG → hyper-instrument MAP

EPS-SG 3MI - on an nutshell

- The instrument relies on a very simple concept
 - 2 wide field-of-view optics (VISNIR + SWIR, 2200km swath)
 - 2D detectors at focal planes (CCD for VISNIR, CMOS for SWIR, 4km nadir pixel)
 - 1 filter wheel inc. polarizer (12 bands from 410 to 2130nm with I/Q/U)



See Fougnie et al., 2018 in JQSRT APOLO'17

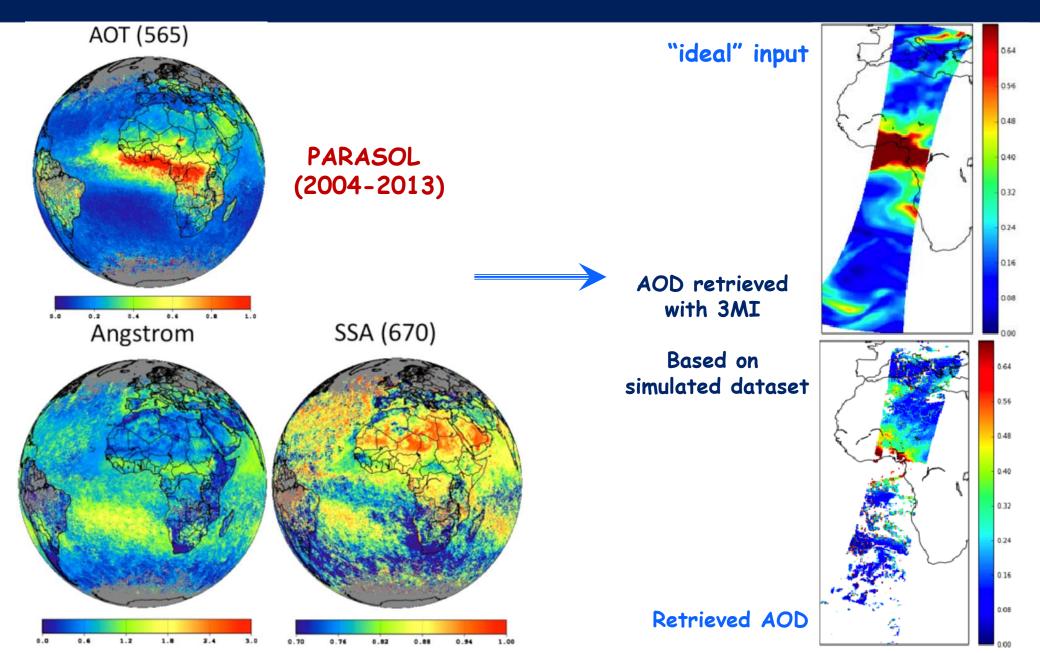
Why polarisation is a key-element for the observation of atmospheric scatterers ?

Level 1 TOA reflectance

First overflight (simulated 3MI data)

Aerosol retrieval from 3MI

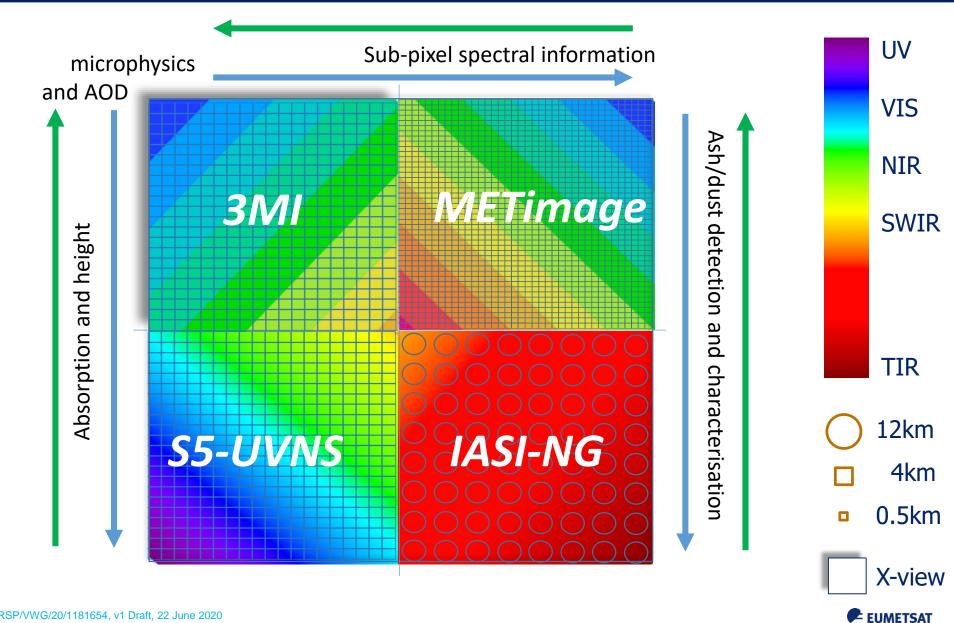
- Large information content:
 - 14 views : from -50° backward to 50° forward
 - 12 spectral bands: from 410 to 2130nm
 - 3 polarisations providing I, Q, and U (except for absorption bands)
 - \rightarrow Potentially 420 information per pixel to feed the retrieval
- The aerosol retrieval will be based on an optimal simultaneous retrieval of the surface and aerosol
 - GRASP was adopted to be the best solver for this specific information
 - From Dubovik et al. 2014
 - Already tested on many sensors (POLDER, PARASOL, MISR, MODIS...)
 - Configured to an Operational processor (product available 1:30 after sensing)
 - The simultaneous retrieval will be adjusted to optimise the performance of the aerosol retrieval



Aerosol retrieval from 3MI

- It is potentially possible to address the following aerosol properties:
 - Aerosol optical thickness
 - Angstrom coefficient
 - Fine/coarse fraction
 - Single scattering albedo
 - Absorbing aerosol optical thickness
 - Refractive indexes
 - Sphericity index
 - Aerosol height
- But it is unrealistic to retrieve all of them and everywhere
 - The geometry of acquisition and/or the surface type strongly influence the performance of the retrieval
- With respect to our user needs, the retrieval will be optimised to derive properly
 - AOD
 - Aerosol model (angstrom coefficient)
- Other parameters will be retrieved when/if possible

Aerosol Product from EPS-SG : 3MI


The hyper-instrument from EPS-SG – on a nutshell

- Information content = incredible collection of measurements from the same single platform
- Creating an hyper-instrument with many key-elements for a 4-km aerosol product: MAP (Multi-sensor Aerosol Product)
 - Extended spectral content: UV/VIS/NIR/SWIR/TIR
 - Improved spectral content: highly resolved in absorption lines
 - Sub-pixel radiometric characterisation
 - Multi-view and polarisation

Sensor	Spatial resolution	Swath	Spectral type	Spectral bands	Spectral range	Additional capabilities
3MI	4x4 km²	2200 x	VIS/NIR/SWIR	12 bands	410 to 2130nm	14 views
		2200 km²				Polarisation (I/Q/U)
METimage	0.5x0.5 km²	2670 km	VIS/NIR/SWIR	11 bands	443 to 2250nm	
			TIR	9 bands	3.3 to 13.3µm	
S5-UVN	7.5x7.5 km²	2670 km	UV/VIS/NIR/SWIR	1669 bands	270-300nm	
	50x50 km² (<300nm)			(0.25nm in SWIR	300-370-500nm	
				to 1nm in UV)	685-710nm	
					755-773nm	
					1590-1675nm	
					2305-2385nm	
IASI-NG	12km spot	2000 km	TIR	16921 bands	645 to 2760cm-1	
				(0.25cm-1)		

The hyper-instrument from EPS-SG sensors

Aerosol characterisation from EPS-SG sensors

The MAP measurements will allow

- More aerosol parameters to be retrieved
- A consolidation and improvement of the 3MI retrieval (the core aerosol mission)

Characterisation	3MI	METimage	S5-UVN	IASI-NG	
Cloud identification	CM	х	0		
Cloud decontamination			0		
Ash/Dust detection		Х	0		0
Aerosol height	ALH	0	Х	0	Х
Aerosol over clouds		0	Х		0
Aerosol model		0	Х	Х	
Aerosol fine fraction	FMF	0			
Aerosol Optical Depth	AOD	0	Х	х	
Aerosol absorption	AAI/SSA	0		0	

- Potentialities for air quality : PM2.5 (function of AOD-fine, height...)
- The development will consider feedbacks from POLDER/PARASOL, MODIS, and EPS/PMAp (GOME, AVHRR, IASI)
 - The activity is only starting

End-users requirements for EPS-SG

• EPS-SG (from EPS-SG EURD):

- Timeline: 100min after sensing NRT
- Parameters to be retrieved [expected performance]:
 - Total and fine mode aerosol optical thickness [0.05]
 - Aerosol type (Angström exponent) [4 classes]
 - Non-sphericity index
 - Effective radius and refractive index (fine and coarse) [0.6µm]
 - Altitude range & aerosol layer height [1km]
 - Aerosol UV absorbing index, single scattering albedo [0.2]
 - Volcanic ash [detection]

Use cases and scenario

- Currently assimilated Level-2 into NWP and CAMS:
 - Aerosol Optical Thickness
- Needs:
 - Aerosol model, Aerosol height
 - PM (particulate matter) is needed for Air Quality
- Level-2 are more generally used to validate the model
- Aerosol-cloud interaction
 - Difficult to retrieve aerosol when clouds
 - But aerosol important for the cloud modelling (nucleation)
 - Aerosol parameters assimilated → output of assimilation = input for cloud modelling (spatial & temporal interpolator)

Concluding remarks - The strengths

Sentinel-3/SLSTR and OLCI

 Dual-view and spectral

EPS-SG/3MI and MAP

The aerosol observatory (synergistic use of multi-view, spectral, polarisation, and spatial resolution)

Concluding remarks – The performance

- Coming systems MTG & EPS-SG are significant steps in term of:
 - Additional information = more measurements, more parameters can be retrieved for the same scene: diurnal cycle, aerosol microphysics, aerosol types, height...
 - Performance: for the already existing parameters
- The performance depends on:
 - The information content available on the measurements: spectral range (UV to TIR), resolution, directional, polarisation...
 - This includes the precision of the measurements: calibration, noise, geometry...
 - The performance of the retrieval approach (should be optimised wrt the information content)
- In general, efforts have to be done on the description of the performance associated to each parameters
- The performance of the aerosol parameter is a parameter by itself and should be properly described in the products

Thank you for your attention

