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Satellites Ground-based in situ

Global spatial coverage High temporal resolution

+ +

+ Representative of large air volume + All weather measurements

+ Spatial mapping / imaging + High accuracy (potentially)

+ Rather uniform quality globally + Measurements in PBL near surface
+ +

Data access Large number of species

- Limited temporal coverage, also - Poor spatial representativeness and
limited by clouds, daytime (UV/VIS) coverage
- Low spatial resolution - Diversity of networks &

- Small number of species Instruments

- Varying vertical sensitivity - Varying data quality

- Comparatively low accuracy

User Workshop on Satellite Atmospheric Composition, EUMETSAT online 24-26 Jun 2020



_ & ®Empa

EUMETSAT Materials Science and Technology

Mass balance onley et al, AMT 2017
m  Quantify flux divergence
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Inverse modelling
m  Atmospheric transport model
m Bayesian inversion, Kalman filter, etc.
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Martin et al., JGR 2003 Er — (},Qr o = (Q'NOI/Q'Noz)/TNOx
m Estimation of global NO, emissions f \
using GOME NO, observations and NO, Measured NO, lifetime
gIobaI GEOS-CHEM model emission NO, column TNOx
m  Assumes that NO, emitted in column -
is chemically depleted within the same ealiaible : bl
column due to short lifetime I ﬁ I
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DECSO algorithm (Mijling et al,, JGR 2012)

m  Mixed Eulerian —
Lagrangian approach

m  Accounts for transport
and chemical decay

m  Kalman filter

wind
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Sentinel-5P NO2, April 2018 - March 2019

NO2 tropospheric column (umol/m2)
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Credit: Ronald van der A
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van der A et al.,, npj Clim. Atm. Sci. 2019

Quantification of NO, emissions along a West
Siberian natural gas pipeline

TROPOMI NO, observations, new retrievals
over snow-covered surfaces

DECSO algorithm for emission quantification

NOx emissions April 2019 (DECSO-TROPOMI)
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Fioletov et al. GRL 2015 Example of SO, near the smelters in Norilsk, Russia
m Estimation of point source SO, o e — o0
emissions from OMI observations | = : . :
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m  Simultaneous fitting of emission,
lifetime, and dispersion
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= Rotation of plumes to have L - —_ by
common wind direction = & . =
m  Mathematical description of a 3 3
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Fioletov et al., ACP 2020

Quantification of SO, emissions
from TROPOMI

Large biases between SO, from
TROPOMI, OMI and OMPS

Biases removed for analysis

TROPOMI has higher uncertainties
per pixel but spatial averages

are 2-3 times more accurate
than for OMI
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Maasakkers et al., ACP 2020 _ o
Prior emissions from EDGAR 4.3.2, WetCHARTS, QFED

m  Quantification of global CH, emissions
and trends and OH from 2010-2015
using GOSAT observations

m Inverse modelling with GEOS-CHEM
atmospheric transport model and
more or less classical Bayesian inversion

m  Ensemble of inversions to test
sensitivity to different settings

4

Rice cultivation, fires, and other
Iy £
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Maasakkers et al., ACP 2020 Oil/gas emissions
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Kuhlmann et al. (2019, 2020 (in review)), Brunner et al. 2019

m  OSSE study with synthetic CO, and NO, observations from future CO2M satellites
m  High-resolution COSMO-GHG forward simulations

m  Synthetic observations for constellations of up to 6 satellites

m  Emissions estimated by mass balance and by analytical inversion

Synthetic CO2M XCO, and NO, observations (250- km swath) Plume detection for
«~  mass-balance approach

(Kuhlmann et al. 2019)
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CO, emissions (Mt yr—1)

CO; emissions (Mt yr—1)

Analytlcal |nver5|on (3 satellltes)
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Mass-balance approach using NO, observations for plume detection

60 T T T T T T T T T T T
——Emissions at overpass (10-11 UTC: 20.0 Mt yr™!) ® #a (10 plumes) ¢ #e (6 plumes)

50 | —Fitted seasonal cycle (22.3%2.5 Mt yr™?) & #c (0 plumes) i

40 T
[ ] ®

30 —

WAANOPAAARAY ¢
20 1 BN RY=T= AR S &
VAN C
10 ] A
! ¢
0
-1
an Feb Mar Apr May Jun Jul Aug Sep Oct Nov  Dec

& @Empa

EUMETSAT Materials Science and Technology

Mean bias and standard deviation
wrt. true emissions at overpass time

Analytical inversion  <1% 15-20%**
Mass-balance*** <25% ~50%

* 20 Mt CO, yr' at overpass (11:30 local time)
** for oyggso Of 0.5 to 1.0 ppm
*** also sensitive to emissions in vicinity of Berlin

Error budget of mass-balance approach

Errorbudget | MB____[sD |

Method error <5% ~30%
Retrieval noise <5-15% 10-30%
Background -30*-15%**  30**-60%*
Wind 5-20%*** ~30%

* CO, measurements (detected plume too small)
** NO, measurements (detects full city plume)
*** sensitive to plume length (vertical mixing)
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Detection of unknown sources v
Quantification of emission hot spots  «/
Estimates of relative share of
individual emission sectors v X

m Estimates of total emissions in v X
political unit (country, county, city)

m Changes during last few years IV 4
(e.g. between reporting periods)

m Long-term emission trends v X

m Increasing resolution of satellites highly benefitial for
source detection and quantification

m Results look often very impressive, but quality of top-down
estimates often difficult to judge
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Thank you for your attention
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