

Satellite instruments measuring NO₂

* Past & present:

25 years of NO₂ observations from space GOME, SCIAMACHY, GOME-2 A/B/C, OMI, OMPS, TROPOMI (Sentinel-5P) Increasing the spatial resolution from about 100 km to about 5 km

* Future:

. . .

Geostationary: GEMS (launched 2020), TEMPO, Sentinel 4 Sentinel 5 CO2M (2 km resolution), with NO₂ for plume identification

Copernicus Sentinel-5P TROPOMI instrument

Dutch instrument Pepijn Veefkind PI (KNMI) Airbus DS, TNO, SRON, KNMI, NSO, ESA, EU

Mission objectives: Air Quality, Climate Change, Ozone layer

TROPOMI combines:

High signal-to-noise
Large spectra range
(large number of trace gas species)

High spatial resolution (3.5 x 5.5 km)

Daily global coverage

Retrieval of NO₂

From spectra to concentrations

NO₂ typical concentration is 1 molecule per 10⁹ air molecules: how can we measure this ??

TROPOMI observations 405-465 spectral range

When looking at the Earth the main spectral features observed are coming from the Sun (solar spectrum)

Jos van Geffen, KNMI

TROPOMI observations 405-465 spectral range

Reflectance is a "nearly" straight line

Also in the reflectance the solar spectral features are still dominant

Ring effect =
inelastic Raman scattering
of sunlight in the
atmosphere

Absorbers accounted for:

- NO₂
- Ozone
- Water vapour
- Liquid water
- O₂-O₂

NO2 spectral fitting: summary

Instrument:

- Need high signal to noise, typically 1000.
- Need accurate calibration of Earth and solar spectra.

Conclusions related to the fits in NO2 window:

- We understand the Earth radiance in great detail, residuals ~1e-4
- NO2 has a very distinct spectral fingerprint and the slant column can be quantified accurately with current instruments.

What did we determine so far?

The amount of NO2 along the path of the light through the atmosphere: The "slant column"

What we do not yet know:

How far did the light pentrate into the atmosphere?

Where is the NO_2 ? (At what altitude?)

Translate "slant column" into vertical column amount

How did the light travel through the atmosphere?

Aspects that influence the light path:

Surface properties (reflection)

There are substantial uncertainties linked to this (20-60%)!

Where did the light travel?

Radiative transfer models

Depending on geometry, clouds, surface albedo, aerosols

Air-mass factor

Where is the NO2?

Atmospheric model describing chemistry, emissions, transport, deposition.

Most of the NO₂ is in the stratosphere!

The NO₂ data product

Averaging kernels

Atmos. Chem. Phys., 3, 1285–1291, 2003 www.atmos-chem-phys.org/acp/3/1285/

Averaging kernels for DOAS total-column satellite retrievals

H. J. Eskes and K. F. Boersma

The DOAS retrieval approach may be re-formulated using Rodgers Optimal Estimation formalism.

DOAS averaging kernel profiles: sensitivity of the measurement to NO₂ at a given altitude

Filtering: the qa_value

• qa value > 0.75

This is the recommended pixel filter. It removes cloud-covered scenes (cloud radiance fraction > 0.5), partially snow/ice covered scenes, errors, and problematic retrievals.

• qa_value > 0.50

Compared to the stricter filter, this adds the good quality retrievals over clouds and over scenes covered by snow/ice. Errors and problematic retrievals are still filtered out. In particular, this filter may be useful for assimilation and model comparison studies.

Use of the NO₂ product

Depending on the application different datasets should be extracted from the L2_NO2 file

	user application	data sets needed
# 1	Tropospheric chemistry / air quality model evaluation and data assimilation Validation with tropospheric NO ₂ profile measurements (aircraft, balloon, MAX-DOAS)	$N_{ m v}^{ m trop},\Delta N_{ m v}^{ m trop,kernel}$ $M^{ m trop},M,oldsymbol{A}^{\dagger}$ $A_l^{ m TM5},B_l^{ m TM5},l_{ m tp}^{ m TM5},p_{ m s}$
# 2	Tropospheric column comparisons, e.g. with other NO ₂ column retrievals	$N_{v}^{trop},\Delta N_{v}^{trop}$
#3	Stratospheric chemistry model evaluation and data assimilation Validation with stratospheric NO ₂ profile measurements (limb/occultation satellite observations)	$N_{ m v}^{ m strat}, \Delta N_{ m v}^{ m strat}$ $M^{ m strat}, M, {f A} ^{\ddagger}$ $A_l^{ m TM5}, B_l^{ m TM5}, l_{ m tp}^{ m TM5}, p_{ m s}$
# 4	Stratospheric column comparisons, e.g. with ground-based remote sensors	$N_{ m v}^{ m strat},\Delta N_{ m v}^{ m strat}$
# 5	Whole atmosphere (troposphere + stratosphere) data assimilation systems	$N_{ m V},\Delta N_{ m V}^{ m kernel}$ § ${f A}$ $A_l^{ m TM5},B_l^{ m TM5},l_{ m tp}^{ m TM5},p_{ m S}$
# 6	Whole atmosphere (troposphere + stratosphere) comparisons with ground-based remote sensing (e.g. Pandora)	N _v ^{sum} , ΔN _v ^{sum} §
#7	Visualisation of the NO ₂ product	Ntrop, Nstrat, Nsum §
† The transport of the series		

[†] The tropospheric kernel \mathbf{A}^{trop} is derived from the total kernel \mathbf{A} and the air-mass factors M and M^{trop} .

[‡] The stratospheric kernel $\mathbf{A}^{\text{strat}}$ is derived from the total kernel \mathbf{A} and the air-mass factors M and M^{strat} .

[§] Note that the total NO₂ vertical column $N_v \equiv N_s/M$ is *not* the same as the sum $N_v^{\text{sum}} \equiv N_v^{\text{trop}} + N_v^{\text{strat}}$

Replacing the a-priori using the averaging kernels

The TROPOMI NO₂ tropospheric column may be re-computed using the profile $x_{m,l}$ from an alternative model (high-resolution regional air-quality model). Needed are the tropospheric averaging kernel and AMF, and the following equations:

$$egin{aligned} N_{ extsf{v}}^{ ext{trop}'} &= rac{M^{ ext{trop}}}{M^{ ext{trop}'}} N_{ ext{v}}^{ ext{trop}} \ oldsymbol{A}^{ ext{trop}'} &= rac{M^{ ext{trop}}}{M^{ ext{trop}'}} oldsymbol{A}^{ ext{trop}} \ M^{ ext{trop}'} &= M^{ ext{trop}} \sum_{l} A_{l}^{ ext{trop}} x_{m,l}' / \sum_{l} x_{m,l}' \end{aligned}$$

All quantities on the left with a prime ' are recomputed using the model NO₂ partial-column profiles $x_{m,l}^{'}$. Other quantities are taken from the S5P_L2_NO2 file.

Using a-priori profiles from CAMS-regional AQ forecasts for Europe

Ratio NO2 tropospheric column CAMS a-priori / TM5MP a-priori

Tropospheric column increases by 10-50% over hotspots when using high-resolution regional model a-priori profiles 1x1 degree ->

0.1x0.1 degree

John Douros, KNMI

Using a-priori profiles from CAMS-regional AQ forecasts for Europe

TROPOMI NO2 based on CAMS-regional a-priori

CAMS-regional vertical column NO2

Single overpass, 26 July 2018

John Douros, KNMI

Applications

The NO₂ measurements may be used for:

- * Emission estimates
 - Inverse modelling
 - Plume analysis using wind information
 - Flux divergence (Steffen Beirle et al., 2019)
- * Source identification
- * Data assimilation
 - Primary user is CAMS (Copernicus Atmospheric Monitoring Service)
- * Model validation
- * Reactive nitrogen mapping (improving knowledge N-deposition)
- Trend studies / emission change monitoring
- * Visualisation

NO2 pollution reductions related to COVID-19 lockdown in China, measured with Sentinel-5P TROPOMI

Sentinel-5P NO₂, March-April 2019

Emission estimates: plume analysis

Estimating emissions of Parijs Combining daily plume observations with wind information Lorente et al., Nature Sci. Rep. 2019

Flux divergence method Beirle et al., Science Adv. 2019

Emissions, using inverse modelling

Emissions in China Ding et al., GRL 2020

P1: Before lockdown

P2: during lockdown

P3: after lockdown

CAMS as main user of the Copernicus Sentinel 5P, 4, 5 composition observations

The nitrogen (deposition) problem: loss of biodiversity

Identification of emision sources

string of gas compressor stations along natural gas pipeline every ≈ 100 km

R. v.d. A et al., NPJ Clim. Atmos. 2020

TROPOMI NO₂ emission inversion (DECSO) for April 2019 compared with bottom up emission inventory (HTAP/EDGAR)

Summary NO₂

- * The NO₂ (tropospheric slant) column can be accurately determined from space with UV-Vis spectrometers, covering a two order of magnitude range of column values, but require high signal-to-noise spectrometers.
- * The air-mass factor, depending on clouds, surface albedo, aerosol, is a major source of uncertainty.
- * The data products are extended, contain intermediate and input products and offer full traceability. Averaging kernels can be used to remove dependence on a-priori, or replace a-priori with high-resolution (regional) model NO2 profiles.
- * A large range of applications: Emission estimates and source identification, data assimilation and model validation, reactive nitrogen mapping, emission change monitoring (trends, COVID-19 lockdown impacts), visualisation