

Dust ground based observations Lucia Mona ACTRIS CNR Italy

Outline

- Dust component -typing
- **U** Why GB measurements
- Measurements at the surface
- **Columnar measurements**
- Profiling measurements

Aerosol typing – why relevant

Knowing the type of the aerosol can help to:

- understand sources, transformations, effects, and feedback mechanisms.
- improve accuracy of satellite retrievals; test aerosol models; and
- quantify assessments of aerosol radiative impacts on climate.

CAMS example

Copernicus Atmospheric Monitoring System

Dust component & aerosol typing

DUST word is used very often to mean desertic particles.... but **DUST** is also used in different communities for coarse particles in general

Important to avoid not-needed confusion

 Within remote-sensing community
 With respect to near-surface and modelling communities
 Taking into account observation user <u>communities</u>

How to know about aerosol types

Dust component - Definition

NOMENCLATURE

Different platforms use different names for "the same" aerosol type.

Just one easy example:

In some cases different names are also indicating some differences in physical meaning.

Dust component - Identification

DUST is typically identified thanks to its asphericity and dimension.

- Angstrom exponent + Angstrom exponent curvature [AERONET-Gobbi 2007]
- Desert region [AERONET-Catrall 2005]
- Particle Depolarization Ratio + Attenuated Backscatter+ Location [CALIPSO- Omar 2009]
- Particle Depolarization Ratio [EARLINET- Gross]
- Particle depolarization Ratio + Angstrom +Lidar Ratio + Backtrajectories [EARLINET Wandinger 2010]
- Brigthness temperature at 800 and 1200 cm-1+ clean scenario reference [IASI Clarisse 2013]
- □ Radiances /models for AOD + Angstrom + SSA [MISR Kahn 2015]
- □ Reflectance at 440, 412 and 2130 nm [MODIS, Ciren 2013]

Dust component - Identification

Different observables
 Same observable : Different "thresholds"?

Linear Depolarization Ratio 0.3-0.35 Pure Dust [HSRL Burton] Linear Depolarization Ratio >0.2 Pure Dust [Omar et al., 2009]

Combination of observablesExternal constraints

How change the different observables with particles properties changes?

Dust Observation Catalogue

Realized in the framework of **InDust COST action**, a international effort for establishing a network involving research institutions, service providers and potential end users of information on airborne dust.

	0		react.space.	noa.gr		Ç			\bigcirc	∆ + C
Spettatore post riunione - Zoom	Course: Training schoo	I and Workshop on Dust	Aerosol	W File	e:Pm25-24a-super.gif	- Wikipedia		ID inDust - Dust	Observation Dat	abase
Dust Catalogue 🛛 🖶 Satellites		Campaigns 🔎	Dust Models	i≋ Marin	e Environments				Ə Admir	Login
Filters Contribute								Data A	vailability	
	Parameter Network	k Instrument	Spectral Ra	Unit	Temporal R	Vertical Res	Covered Re	From	То	NRT/RRT
Parameter	Aerosol Ba MPLNet	Lidar	355nm, 527	km-1 sr-1	1 min - for a	75 m in the	59 sites glo	1999-01-01	Present	Yes
	Aerosol Ba ACTRIS/E	A Lidar	355nm, 532	m-1 sr-1	30-60 min	Vertical sa	Europe	2000-05-01	Present	No
	Aerosol Ba LALINET	Lidar	355, 532, 1	m-1	10-200 sec	7.5 m	South Amer	2013-01-01	Present	No
Network	Aerosol De AD-Net	Lidar	532 nm	Unitless	15-min	60m	East Asia	2002-01-01	Present	Yes
	Aerosol Exti MPLNet	Lidar	355nm, 527	km-1	1 min - for a	75 m in the	59 sites glo	1999-01-01	Present	Yes
Instrument	Aerosol Exti ACTRIS/E	A Lidar	355nm, 532	m-1	30-60 min	Vertical sa	Europe	2000-05-01	Present	No
inatument	Aerosol Exti AD-Net	Lidar	532 nm	m-1	15-min	60m	East Asia	2002-01-01	Present	Yes
	Aerosol Lay EUMETNE	Automatic L	N/A	m	30-60 min	Vertical sa	200 station	2016-01-01	Present	No
Spectral Range	Aerosol Lay ACTRIS/E	A Lidar	N/A	m	30-60 min	Vertical sa	Europe	2000-05-01	Present	No
	Aerosol Lay ACTRIS/E	A Lidar	N/A	m	30-60 min	Vertical sa	Europe	2000-05-01	Present	No
	Aerosol Lin ACTRIS/E	A Lidar	355nm, 532	Unitless	30-60 min	Vertical sa	Europe	2000-05-01	Present	No
Unit	Aerosol Opt ACTRIS/E	A Lidar	355nm, 532	Unitless	30-60 min	Integrated p	Europe	2000-05-01	Present	No
	Aerosol Opt AERONET	Sun photo	340nm, 380	Unitless	15 min	Columnar	>200 Stations	1993-05-02	Present	Yes
Temporal Resolution	Aerosol Opt AERONET	Sun-Sky-Lu	340nm, 380	Unitless	15 min	Columnar	Some Euro	2015-01-01	Present	Yes
	Aerosol Ont SKYNET	PREDE Su	340nm 380	l Initlace	1 min	Columnar	100 Stations	1996-01-01	Present	No
Vertical Resolution							<	1 2 3	> 20)/page \vee
International Notwork to Encourage the Lice of	Monitoring and Ecrosophing D	uet Producto /inDuc	t) COST Action	CA16202				• ^	Г	

https://react.space.noa.gr/indust-inventory/

Dust component & aerosol typing

Take home message:

Talking about dust contribution is needed to pay attenction to the meaning of <u>dust</u> word and the <u>method</u> used for the discrimination.

Why Ground Based measurements Satellite observations

Amazing pictures revealing main paths and features.

Yu, H., et al. (2015), The fertilizing roleof African dust in the Amazon rainforest: A Prst multiyear assessment basedon data from Cloud-Aerosol Lidar and Infrared Path Inder Satellite Observations, Geophys. Res. Lett., 42, 1984–1991, doi:10.1002/2015GL063040.

Why Ground Based measurements

Models Global coverage and continuos in time.

MONARCH reanalysis

Why Ground Based measurements

Ground Based measurements are important and needed for:

- Satellite validation
- Satellite algorithm improvement
- Model evaluation
- New method developments

Why?

- Higher possibility to control the measurement
- Strictly QA&QC procedures can be performed
- Integration/synergy of instruments more feasible

General concept

sampling the air for **collecting particulate** on filter or **optically investigating** the sample

Different methods for collecting the particulate sample: gravimetric the most common

Mass of particulate below a certain diameter is obtained: PM10<10micron PM2.5 <2.5 micron (fine particles)

PM1<1micron (ultrafine particles)

Chemical analysis can be done for the identification of species present in the sample.

Optical methods allow the determination of many aerosol optical and physical properties like:

- Backscatter coefficient
- Size distribution
- Absorption coefficient
- Organic versus Elemental carbon content

What is of interest for Dust indentification?

- PM10 as indicator of coarse particles
- PM10/PM2.5 as indicator of dominance of coarse particles
- Desert dust presence can be tracked using chemical tracer X-ray fluorescence (XRF), Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), or Ion Chromatography (IC)

There are methods for attributing PM observations to dust events for the aim of Air Quality Directive 2008/50 based on model tools and wind conditions. Spatial investigation needed with background site and temporal consistency.

Parameter	Concept	Strengths	Weaknesses		Network/ Programme	
PM bulk concentrations	Dust contribution to the collected PM can be estimated considering that dust particles are big particles and that intrusions are anomalies in the PM records	- high spatial density in developed	 not able to directly distinguish dust from other aerosol types different instruments, measurement techniques and dust contribution calculation methodologies full-size range of dust not always encompassed by the PM metrics low spatial density in developing countries 		ACTRIS in situ	
		countries - standardized measurement within air quality networks			ESRL	
					GAW-WDCA	
					INDAAF EANET	
					EIONET	
					EPA	
					IMPROVE	
PM chemical	Presence of mineral elements into PM	- very reliable estimates of dust	ble - very expensive of dust and laborious		ACTRIS in situ	
composition	samples allows the dust contribution	component	 difficult to apply routinely limited availability, mostly limited to short-term campaigns 		EMEP	
e	estimation				GAW-WDCA	
					EANET	
					EIONET	
					EPA IMPROVE	

Parameter	Concept	Strengths	Weaknesses	Netv Prog	work/ gramme
Visibility	Visibility in absence of clouds and precipitation is related to aerosol	- good spatial and temporal coverage	 visibility reduction due to the presence of hydrometeors (fog, rain, etc.) site dependent relationships 		NOAA ISD IMPROVE
Dust	Deposition on filters or concentration at	- limited data availability			CARAGA
deposition	es surface in dust source region can be simply regarded as dust	- heavy			EMEP
fluxes		arded as measurement load			INDAAF
		- data heterogeneity			EANET
Dust physical properties	Absorption photometers, nephelometers, APS and OPC instruments derived size distribution	 standardized measurement techniques distinctive dust optical properties 	- variable spatial density		GAW-WDCA

How it works

Photometer points at Sun and measures radiance at different wavelengths.

Modelling the Solar radiation outside atmosphere and molecular absorption due to gases in atmosphere, observed differences are due to the aerosol presence.

The **Aerosol Optical Depth** is therefore retrived (primary measurement).

Nowadays advanced instruments allow the measurements using Sun, Moon and Star radiation as reference.

Measured quantities

Aerosol Optical Depth at different wavelength

Angstrom exponent δ : exponent in the power law for AOD with wavelength $\text{AOD}_1\text{=}\text{AOD}_2\,(\lambda_2/\lambda_1)^{\text{-}}\delta$

The highest is δ the smaller are the particles. δ around 4 for molecules

Values between -1 and 4

Inversion products

Size distribution typically up to 10 micron

AOD coarse fraction: Fraction of AOD due to particles larger than 1 micron

Dust AOD (DOD)

Angstrom below a certain threshold (and AOD higher than a threshold too)

(e.g. Basart et al., 2009; Todd et al., 2007)

DOD = AOD for the coarse mode (more appropriate for site distant from source)

(O'Neill et al., 2003)

Advanced lidar/photometer products provided fine and coarse mode concentration profiles (uncertanty non assessed)

(Dubovik et al., 2014)

Example

Example

Parameter	Concept	Strengths	Weaknesses	Networks/Programmes
Dust Optical Depth	Dust contribution to the AOD (primary measurement) is obtained considering that coarse particles are dusty particles	 high spatial density in developed countries based on well assessed primary products 	 -different methods (and uncertainty) in dust component evaluation - cut-off in retrieval algorithm (50 μm) not covering the complete dust size distribution - asphericity of the dust particle is still a critical point for inversion products (depending on the used algorithm for the dust contribution estimation) - data are typically limited to daytime condition and not 	 AERONET SkyNet PFR-GAW
			5	

Dust Optical Depth

Measurement techniques

Elastic lidar

Detection only at same wavelength of emitted laser light

🖵 Raman lidar

Detection tuned on shift for molecules present in atmosphere for aerosol extinction measurements

□ High Spectral Resolution Lidar (HSRL)

interferometrically separates the elastic aerosol backscatter from the Doppler broadened molecular contribution.

Ceilometer?

A low power elastic lidar

Measured aerosol parameters

Aerosol backscatter coefficient

(relevant assumptions if elastic lidar)

Aerosol extinction coefficient

(for Raman and HSRL)

□ Lidar ratio (i.e. extinction to backscatter ratio)

(for Raman and HSRL)

Angstrom exponent

(for multiwavelength lidar)

If equipped with depolarization channel

- Volume depolarization ratio
- Particle depolarization ratio

Lidar remote sensing Example of collected signals

Tito(Pz) MUSA Range Corrected Signal @ 1064 nm Analog

Dust arrival example - 26 June 2006 Potenza IT

Parameter	Concept	Strengths	Weaknesses	Networks/Programmes
Dust Backscatter & extinction profiles	Particle depolarization measurements enable to identify the dust component in the aerosol backscatter & extinction profiles obtained by lidar measurements	 High vertical resolution Possibility to investigate co- presence of different aerosol type at different altitudes Possibility to investigate layer below clouds 	 No other depolarizing particles considered in the dust attribution Different setups mean different assumptions and uncertainties Typically, not available 24/7 Lower uncertainty in nighttime condition Low clouds and precipitation inhibit the measurements 	 ACTRIS/EARLINET AD-net LALINET MPLnet GALION E-profile(for ceilometers)
Dust Mass prof Concentration profiles and som (alg mas prof	Dust backscatter profiles are used typically as input for deriving the extinction profiles and then through some assumptions (algorithm) the mass concentration profile	 -High vertical resolution Main required information for aviation purposes Synergy of lidar and photometer plus retrievals can reduce the total uncertainties 	 -30-60% for Raman/HSRL lidars (even up to 100% for particles larger than 15μm) -Additional uncertainty for backscatter lidars due to further assumptions (lidar ratio) -Errors of advanced retrieval algorithms still to be quantified -<u>Typically</u> not available 24/7 -Lower uncertainty in nighttime condition 	 ACTRIS/EARLINET AD-net LALINET MPLnet GALION
			-Low clouds and precipitation inhibit the measurements	

Promising dust lidar product

Target Classification

20210226cyc1930 elic v5.2.0.nc

A lidar Early Warning System

Dust (and volcanic ash) can be a hazard for aviation.

MODIS

Sky turned orange over Heraklion Crete on 22/03/2018

A lidar Early Warning System

The developed methodology (Papagiannopoulos et al., ACP, 2020)

- uses EARLINET/ACTRIS high-resolution data for an EWS for volcanic dust/desert dust
- **□** requires **single-wavelength** polarization lidar (i.e., particle β and δ).
- □ can be applied to other **networks** (e.g., MPLNET, LALINET, ADNET...).

A lidar Early Warning System

Take home message

- Dust contribution can be inferred by the different techniques and methods
- Methods are different and differences have to be taken into account
- Pro and cons different for each different technique