Mesoescale oceanic eddy-induced modifications to air-sea heat and CO₂ fluxes #### Dr. Luciano Ponzi Pezzi Laboratory of Ocean and Atmosphere Studies (LOA) Earth Observation and Geoinformatics Division (OBT) National Institute for Space Research (INPE) EUMETSAT-SOLAS December - 2021 ### Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region L. P. Pezzi, R. B. Souza, M. S. Dourado, C. A. E. Garcia, M. M. Mata, and M. A. F. Silva-Dias 1 This was our first O-A cruise and we got a "textbook case" In situ observations #### O-A interactions in strong SST gradient regions # INPE ### TWO POSSIBLE PHYSICAL STABILITY MECHANISMS OF CLAM: Hydrostatic Stability Static Stability Lindzen and Nigan (1987), Wallace *et al.* (1989) surface wind is affected by pressure gradient at sea level (SLP). Hydrostatic stability. Hayes *et al* (1989) - surface wind is affected by the turbulence of the atmospheric boundary layer. Static stability ## How do we study air-sea interaction processes? - In situ observations (opportunity x permanent) - Satellite data - Numerical Modeling (global, regional, coupled) EUMETSAT-SOLAS December - 2021 #### INTERCONF OPERANTAR 32 14 to 20 October 2013 ### Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence Ronald Souza ^{1,*}, Luciano Pezzi ², Sebastiaan Swart ^{3,4}, Fabrício Oliveira ⁵ and Marcelo Santini ² #### **Increase – ED1:** 78% sensible and 55% in latent heat fluxes #### **Decrease – ED2:** 49% sensible and 25% in latent heat fluxes EUMETSAT-SOLAS December - 2021 #### scientific reports #### **OPEN** Oceanic eddy-induced modifications to air-sea heat and CO2 fluxes in the Brazil-Malvinas Confluence Luciano P. Pezzi^{1™}, Ronald B. de Souza², Marcelo F. Santini¹, Arthur J. Miller³, Jonas T. Carvalho¹, Claudia K. Parise⁴, Mario F. Quadro⁵, Eliana B. Rosa¹, Flavio Justino⁶, Ueslei A. Sutil¹, Mylene J. Cabrera¹, Alexander V. Babanin⁷, Joey Voermans⁷, Ernani L. Nascimento⁸, Rita C. M. Alves⁹, Gabriel B. Munchow⁹ & Joel Rubert¹⁰ **ATMOS Project OPERANTAR 38** October/November 2019 **EUMETSAT-SOLAS** December - 2021 Look at the power of the warm core eddy in OP38 Antarctic M. Odeling Observation System INPE-PROANTAR EUMETSAT-SOLAS December - 2021 INPE #### Look at the power of the 300 warm core eddy in OP38 200 Radiation fluxes (W m⁻²) SST (°C) 20191018 Heat flux from oean -200 Q_{net} to the atmosphere Longtitude -300 <u></u> -54.5 -54 -53.5 -53 -52.5 -52 -51.5 Longitude 25 25 8 __CO₂ Flux CO₂ Flux 20 20 SST_{bulk} - T_{ship} 15 15 3 10 10 2 CO₂ Flux 5 CO₂ Flux 5 SST_{bulk} -0 -5 -5 -2 -2 -10 -10 -4 -15 -15 -3 -6 -20 -20 -4 -25 -54.5 -8 -51.5 -5 -51.5 -25 -54 -53.5 -53 -54.5 -53.5 -53 -52.5 -52.5 -52 -52 a b Longitude ## In addition to getting turbulent fluxes observations... we want to try our own parameterizations... $$FCO_{2BK} = s.k.\Delta pCO_{2(mar-ar)}$$ CO₂ fluxes $$\frac{\tau}{\rho} = \overline{u'w'} = u_*^2 = C_{D10}\overline{u_{10}}^2.$$ Momentum fluxes analogue $$C_{DN10} = (0.75 + 0.067 \overline{u_{N10}}) \times 10^{-3}$$. Heat fluxes both the **transfer velocity coefficient**and **drag coefficient** ... are bulk "**physical-statistical**" parameterizations ### In addition to getting observational turbulent fluxes ... #### we want to try our own parameterizations... "transfer velocity coefficient (K)" ... is a bulk "physical-statistical" parameterization This is our first try on parameterization to SWA $$K = 0.36.U_{10m}^2 - 0.8 U_{10m} + 3.6$$ ## The Warm Core Eddy impact is perceived above the top of the Marine Atmospheric Boundary Layer (MABL) ... ## Thank you very much for the opportunity and your attention!!! EUMETSAT-SOLAS December - 2021