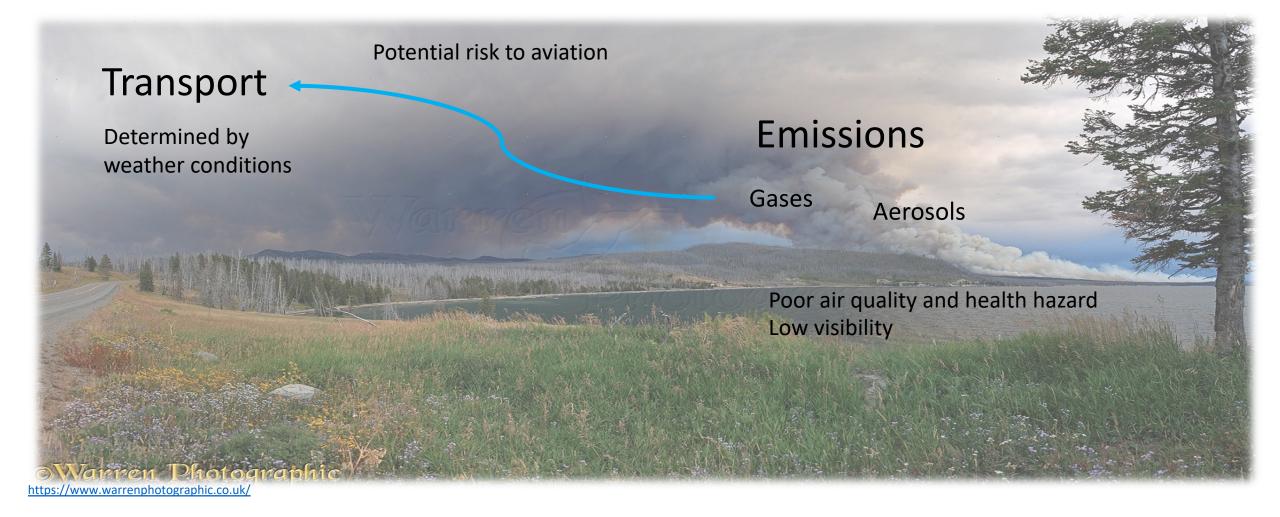
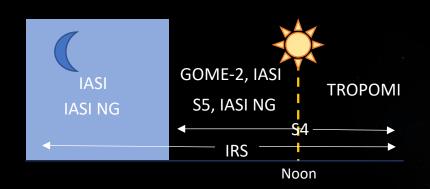
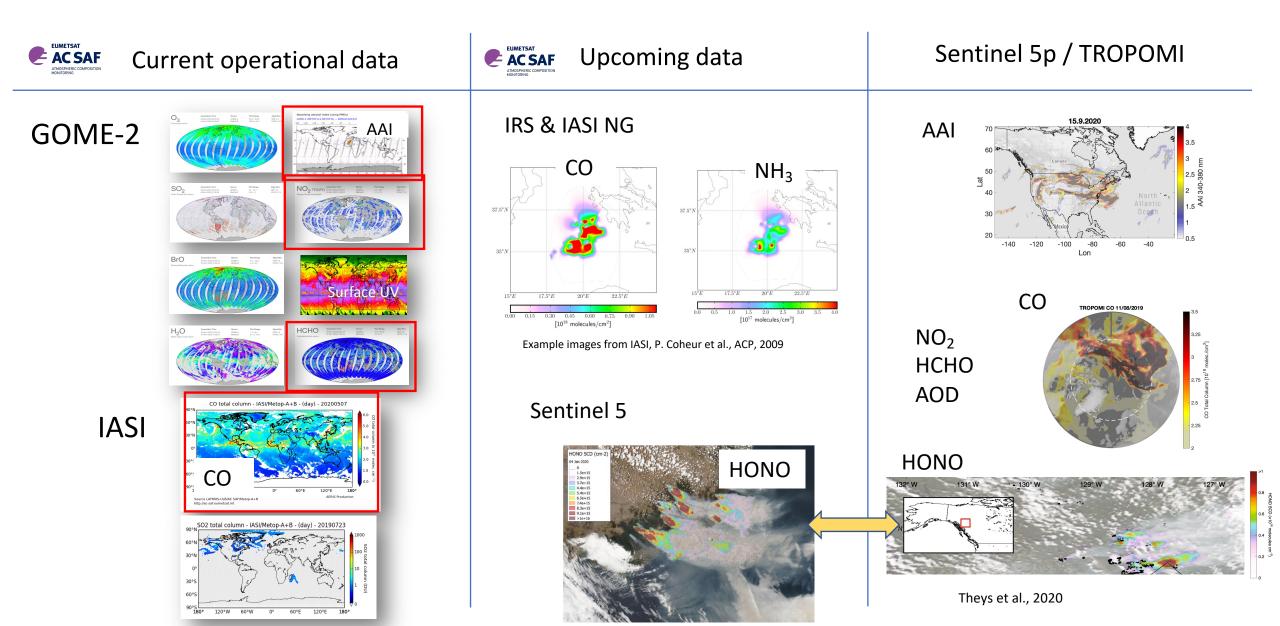
Atmospheric observations for wildfire monitoring


Anu-Maija Sundström, Finnish Meteorological Institute

Earth Observation Products for Wildfires Monitoring and Forecast 2022 18.-20.10.2022, Lisbon

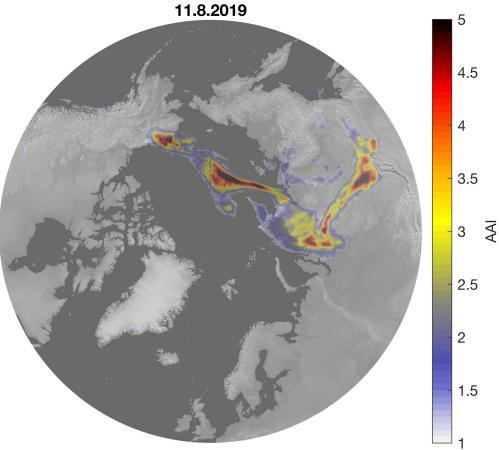


Fire emissions in the atmosphere

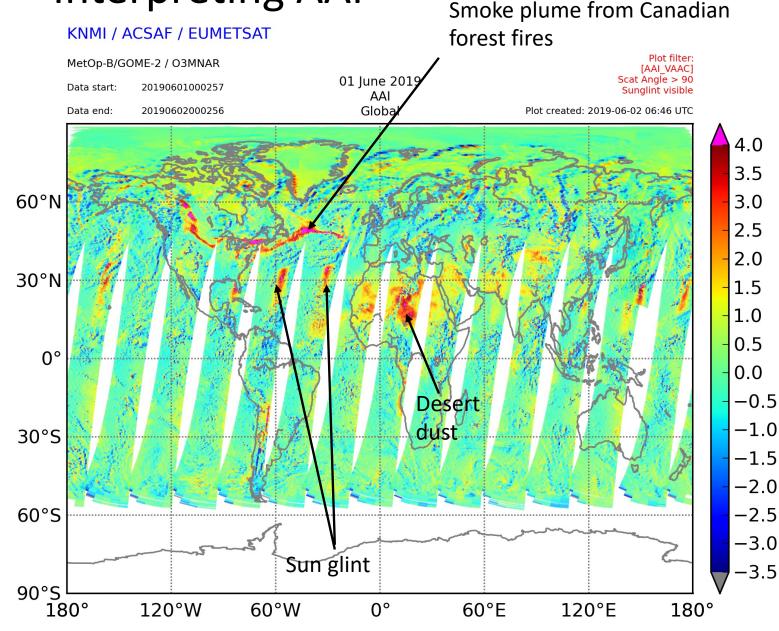


Satellites observing atmospheric composition

- EUMETSAT METOP A (2006-2021), B (2012->) and C (2018->)
 - GOME-2 (UV-VIS)
 - IASI (Thermal IR)
- Copernicus Sentinel 5p (2017->)
 - TROPOMI (UV-VIS + Shortwave IR)
- Metop Second Generation (Metop-SG (EPS-SG))
 - Sentinel 5 (UV-VIS)
 - IASI NG (Thermal IR)
- Meteosat Third Generation (MTG)
 - Sentinel 4; Ultraviolet, Visible and Near-Infrared instrument (UVN)
 - IRS; InfraRed Sounder


An overview of the atmospheric composition products relevant for wildfire monitoring

Absorbing Aerosol Index and Carbon Monoxide as Tracers of Atmospheric Fire Plumes

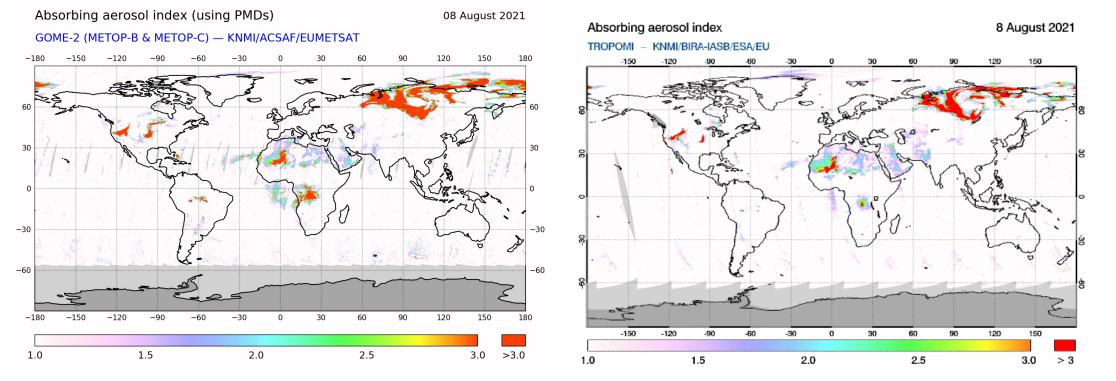

Absorbing Aerosol Index (AAI)

- Also known as UV Aerosol Index (UVAI)
- Defined using UV-wavelengths (GOME-2, TROPOMI, OMI, OMPS, S5)
- Sensitive to absorbing aerosols: smoke, volcanic ash, desert dust
- AAI separates the spectral contrast at two UV wavelengths caused by aerosol extinction from that of other effects (e.g. molec. scattering)
- Clouds do not "prevent" the observation

AAI is a good tracer for smoke plumes

Interpreting AAI




Positive values indicate presence of absorbing aerosols

- For clouds (or scattering aerosols) AAI is close to zero or negative
- Positive values can also be other aerosols than smoke!
- Also sunglint over ocean causes positive values but that is often filtered out from the data.
- For (smoke) plumes typically AAI > 1.0
 - Typical background slightly positive
 - AAI is a function of several parameters (aerosol load, type, height) => not always "direct" indicator of aerosol amount
 - Sensitive to elevated aerosol layers

GOME-2 & TROPOMI AAI quicklook at SACS

https://sacs.aeronomie.be/nrt/

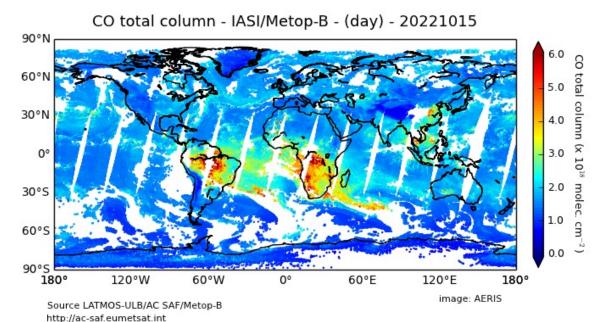
- The AAI values often somewhat differ between GOME-2 and TROPOMI; this can be explained with different observation time, also possible differences related to instrument
 - Comparison of exact values is not straightforward
- TROPOMI has much higher spatial resolution (5.5 km x 3.5 km) than GOME-2 (10km x 40km), and therefore it can potentially detect smaller scale fires.

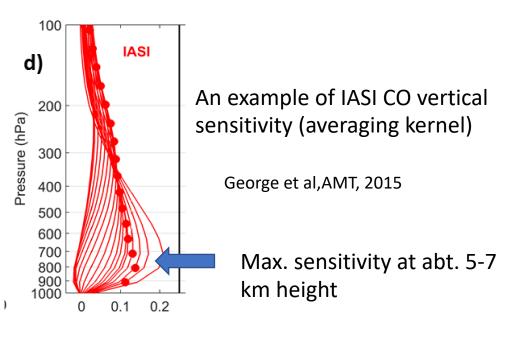
Accessing the AAI data

- GOME-2 AAI: FMI AC SAF data service
 - Register: <u>https://acsaf.org/registration_form.html</u>
 - Download: https://acsaf.org/offline_access.html
- TROPOMI UVAI: Sentinel 5p pre-operations data hub
 - No registration needed, username and password: s5pguest
 - Download: https://s5phub.copernicus.eu/dhus/#/home

💼 🖉 🚱 🖉	opernicus	Sentinel-5P Pre-Operations Data Hub								
■ Insert search criteria	A.W.	8	۹	Bode						
	Reykjavik	Faroe Islands	Trondheim	Umeå Ostersund Finland Sundsvall Jyväskylä Petrozavods Tampere Levi						
			Bergen Norway Oslo ^O	Gavle, Turku Saint Petersburg Swed en Ouppsala						

safserver.fmi.fi/index.html

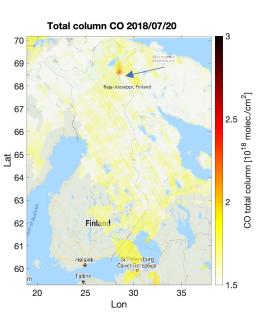

Search & order

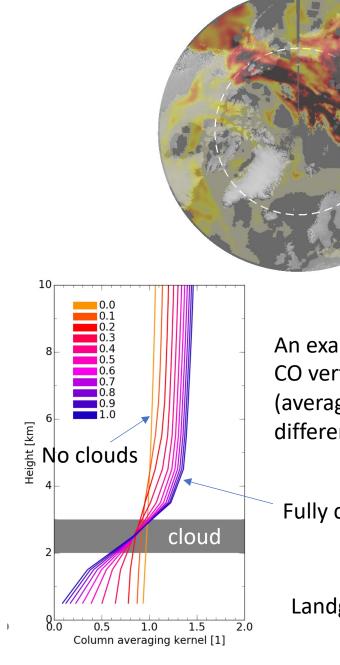

Select the product type you wish to order

- Coarse resolution ozone profile
- High-resolution ozone profile
- Absorbing aerosol index
- Absorbing aerosol index from PMDs
- Surface UV
- Surface UV time series
- Submit

CO observations from IASI

- The IASI instrument (also IASI NG and IRS) observe CO using the Thermal InfraRed (TIR) spectral band.
 - CO retrieval is based on thermal contrast, typically lower sensitivity close to surtace
 - Observations are made twice a day: "daytime", "nighttime"
 - IASI circular pixel corresponds to a 12 km diameter footprint
- CO is given as total column
 - Units are e.g. molec./cm²
- Co-analysis with (daytime) IASI and GOME-2 can help to identify smoke plumes.





TROPOMI CO observations

- TROPOMI observes CO in the 2.3 μm spectral range of the shortwave infrared (SWIR)
 - Often more sensitive to boundary layer variations (in clear sky) than TIR instruments
 - For cloudy scenes partial column is obtained.
- Due to high spatial resolution (5.6 x 7 km²) relatively small-scale fires can also be observed.
- Currently TROPOMI is the only instrument that provide both CO and AAI observations

An example of TROPOMI CO vertical sensitivity (averaging kernel) for different cloud fractions

3.25

CO Total Column [10¹⁸ molec

2.25

Fully cloudy

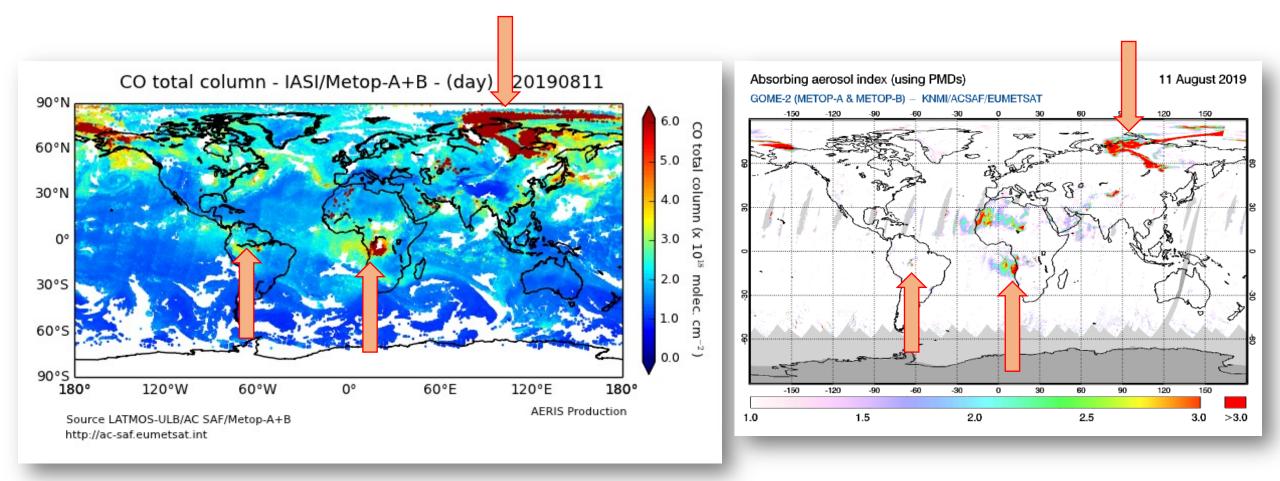
TROPOMI CO 11/08/2019

Landgraf et al., AMT

Accessing the CO data

- IASI CO: AERIS data hub
 - Register and download: <u>https://iasi.aerisdata.fr/CO_IASI, A_data/</u>, <u>https://iasi.aerisdata.fr/co_iasi_b_arch/</u>
- TROPOMI CO: Sentinel 5p pre-operations data hub
 - No registration needed, username and password: s5pguest
 - Download: https://s5phub.copernicus.eu/dhus/#/home

IASI/Metop-A CO total column Level 2 data

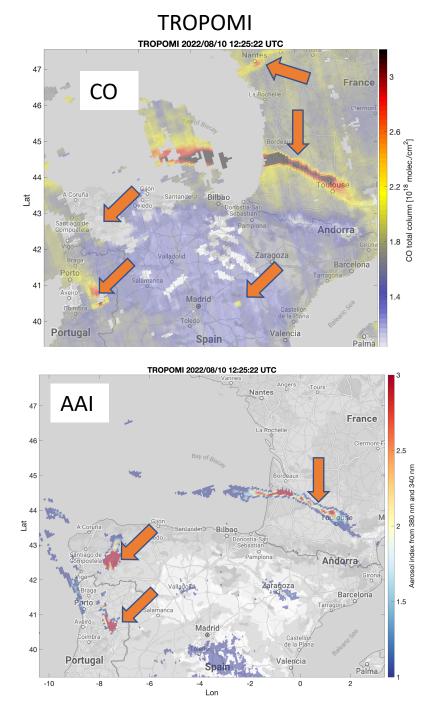

Data access :	2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019	
		README
via calendar: click	on a day to download the corresponding datafile	QUICKLOOKS
via curl command		Metadata page
Disclaimer: the data	ile of day D can still be updated until day D+30 because of some potential missing data.	

			ary 2			_				Jary			_		1	Mar	ch 2	019			April 2019						
Su Mo Tu We Th Fr Sa	Su	Su Mo Tu We Th Fr Sa							Su Mo Tu We Th Fr Sa								Tu	We	Th	Fr	S						
		1	2	3	4	5						1	2						1	2		1	2	3	4	5	E
6	7	8	9	10	11	12	3	4	5	6	7	8	9	3	4	5	6	7	8	9	7	8	9	10	11	12	1
13	14	15	16	17	18	19	10	11	12	13	14	15	16	10	11	12	13	14	15	16	14	15	16	17	18	19	2
20	21	22	23	24	25	26	17	18	19	20	21	22	23	17	18	19	20	21	22	23	21	22	23	24	25	26	2
27	28	29	30	31			24	25	26	27	28			24	25	26	27	28	29	30	28	29	30			Г	Г
_														31													ir


			y 20					June 2019									y 20			August 2019									
Su	Мо	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa	Su	Мо	Tu	We	Th	Fr	Sa		
			1	2	3	4							1		1	2	3	4	5	6					1	2	3		
5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13	4	5	6	7	8	9	10		
12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20	11	12	13	14	15	16	17		
19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27	18	19	20	21	22	23	24		
26	27	28	29	30	31		23	24	25	26	27	28	29	28	29	30	31				25	26	27	28	29	30	31		
							30												\square										

Identifying smoke plume: IASI CO and GOME-2 AAI from Metop-A and B

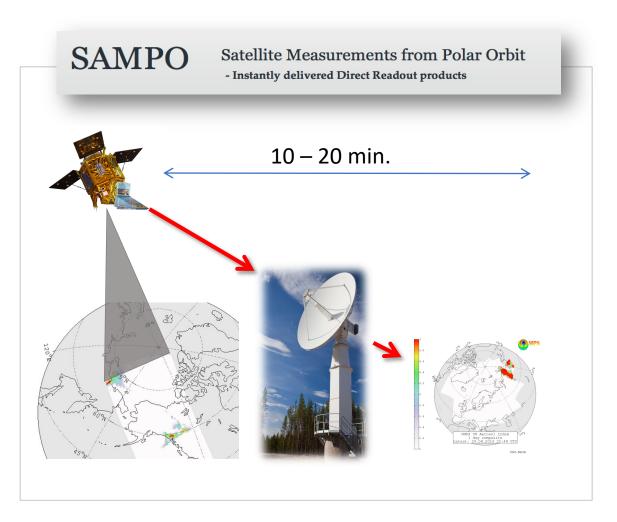
Fire plume i Where both AAI and CO enhancements are observed



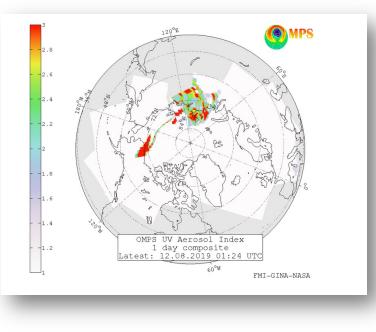
Example: TROPOMI observations on 10th August, 2022

- 1. Fire plumes picked up by both AAI and CO
- 2. AAI shows elevated values, CO data missing due to clouds

3. Elevated CO values, no AAI signal. Source could be fires, but also e.g. industrial hot spots


Summary

- Satellites provide observations on several atmospheric parameters that are related to fire emissions
 - Fires emit multiple species, many gas concentrations are enhanced
 - For tracking the actual smoke plume, AAI and CO are useful parameters
 - There are also several challenges related to direct use of satellite data, such as:
 - Clouds
 - Vertical sensitivity and assesment of air quality
 - Best estimation of potential air quality hazard is obtained by combining all kind of available data: satellites, in situ and models



The SAMPO service (www.sampo.fmi.fi)

by Finnish Meteorological Institute

- NRT satellite service maintained by FMI for monitoring atmospheric composition in the Northern Hemisphere/ Arctic
- Receiving stations in Sodankylä and Alaska
 - Satellite-instruments: OMI, OMPS

SAMPO provides observations also on AAI