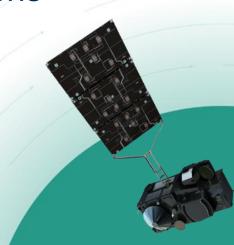


Lucia Mona


ACTRIS

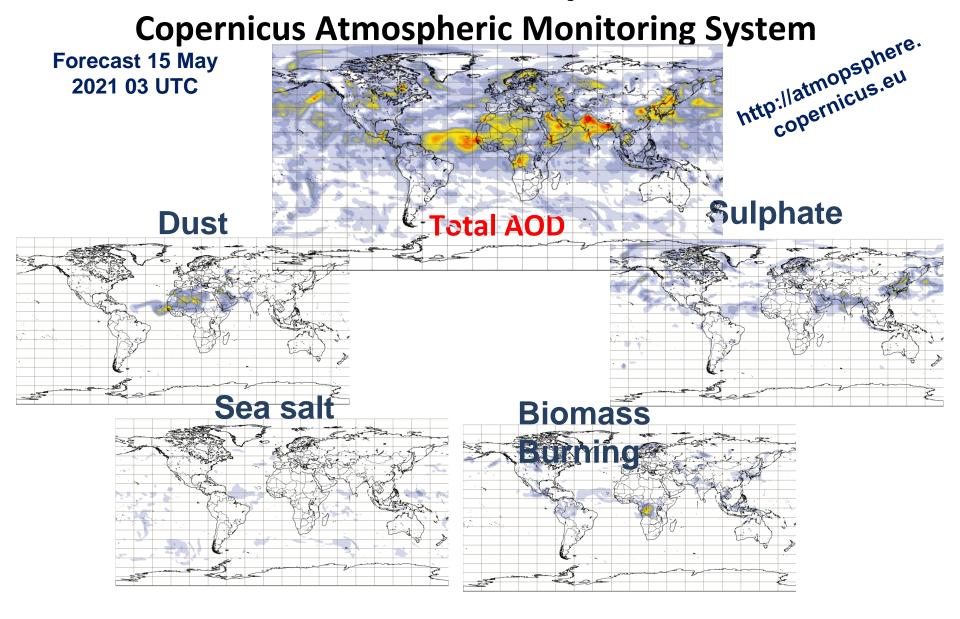
(Aerosol Clouds Trace Gases Research

Infrastructure)

CNR

Italy

Outline


- ☐ Dust component -typing
- ☐ Why GB measurements
- Measurements at the surface
- ☐ Columnar measurements
- **☐** Profiling measurements

Aerosol typing – why relevant

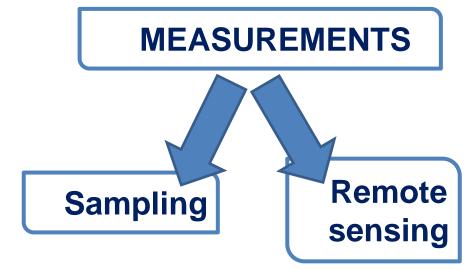
Knowing the type of the aerosol can help to:

- understand sources, transformations, effects, and feedback mechanisms.
- improve accuracy of satellite retrievals; test aerosol models; and
- quantify assessments of aerosol radiative impacts on climate.

CAMS example

Dust component & aerosol typing

DUST word is used very often to mean desertic particles.... but **DUST** is also used in different communities for coarse particles in general


Important to avoid not-needed confusion

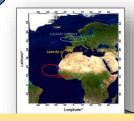
- Within remote-sensing community
- With respect to near-surface and modelling communities
- Taking into account observation user communities

How to know about aerosol types

MODELS

- Emission inventory
- Emission model
- Meteorological field for transportation

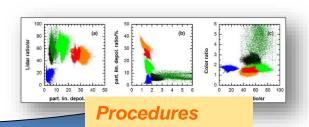
- ➤ Chemical composition
- ➤ Size characterization
- ➤ Shape observation


➤ Optical properties characteriz ation

How to know about aerosol types The general approach

Identify the source for defining the aerosol characteristics

Investigate characteristics for understanding the source


More common in Ground Based observations More common in satellite observations

Measurements

Input for defining automatic procedures for typing

Dust component - Definition

NOMENCLATURE

Different platforms use different names for "the same" aerosol type.

Just one easy example:

In some cases different names are also indicating some differences in physical meaning.

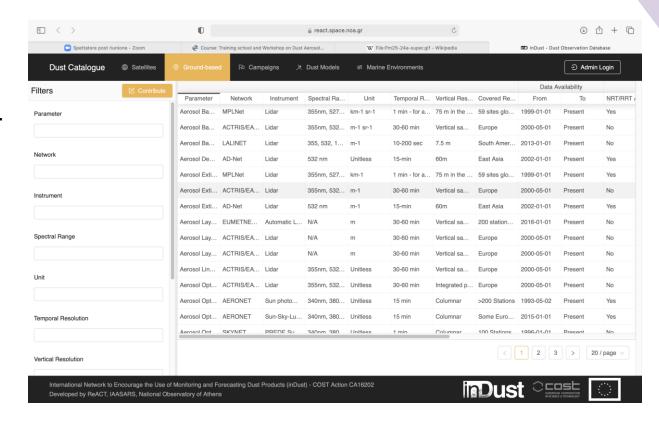
Dust component - Identification

DUST is typically identified thanks to its asphericity and dimension.

u	Angstrom	exponent	+	Angstrom	exponent	curvature
[AE	RONET-Go	bbi 2007]				
	Desert reg	ion [AERONE	T-C	atrall 2005]		
	Particle	Depolarization	R	atio + Atte	enuated Ba	ackscatter+
Loc	cation [CAL	IPSO- Omar 20	009]			
	Particle De	epolarization R	atio	[EARLINET-	Gross]	
	Particle of	depolarization	Ra	tio + Angst	trom +Lida	r Ratio +
Bad	cktrajectorie	es [EARLINET	War	ndinger 2010]		
	Brigthness	s temperature	at 8	300 and 1200	cm-1+ clea	n scenario
	reference [IASI Clarisse 2	2013]		
	Radiances	/models for A	OD -	- Angstrom +	SSA [MISR	Kahn 2015]
	Reflectanc	e at 440, 412 a	nd 2	2130 nm [MOD	IS, Ciren 20 ^o	13]

Dust component - Identification

- Different observables
- Same observable : Different "thresholds"?

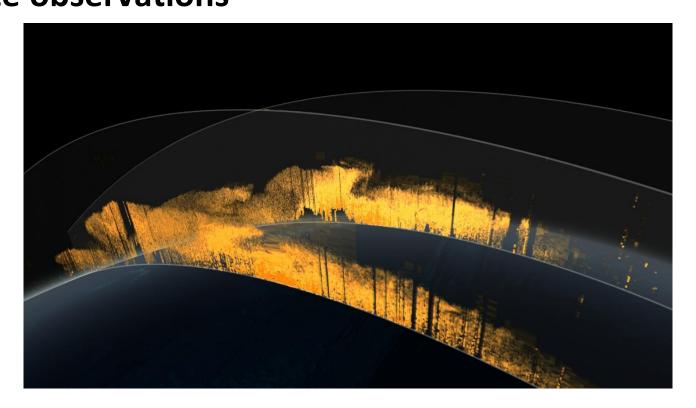

Linear Depolarization Ratio 0.3-0.35 Pure Dust [HSRL Burton] Linear Depolarization Ratio >0.2 Pure Dust [Omar et al., 2009]

- Combination of observables
- External constraints

How do the different observables change as a function of particle properties changes?

Dust Observation Catalogue

Realized in the framework of InDust COST action, a international effort for establishing a network involving research institutions, service providers and potential end users of information on airborne dust.

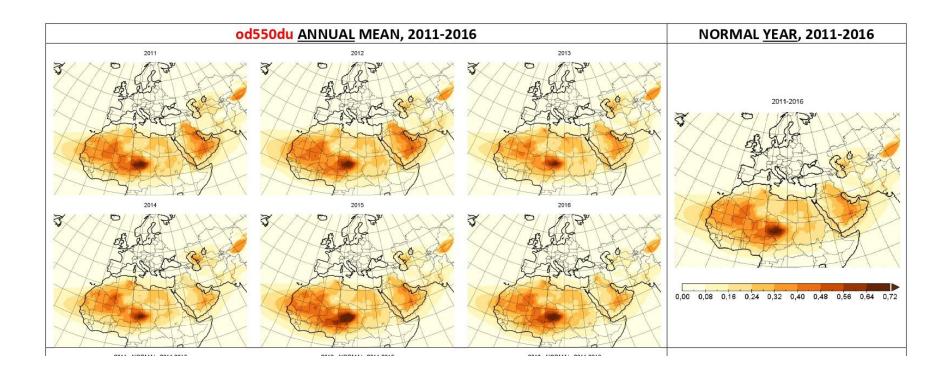

https://react.space.noa.gr/indust-inventory/

Dust component & aerosol typing

Take home message:

Talking about dust contribution is needed to pay attenction to the meaning of <u>dust</u> word and the <u>method</u> used for the discrimination.

Why Ground Based measurements Satellite observations

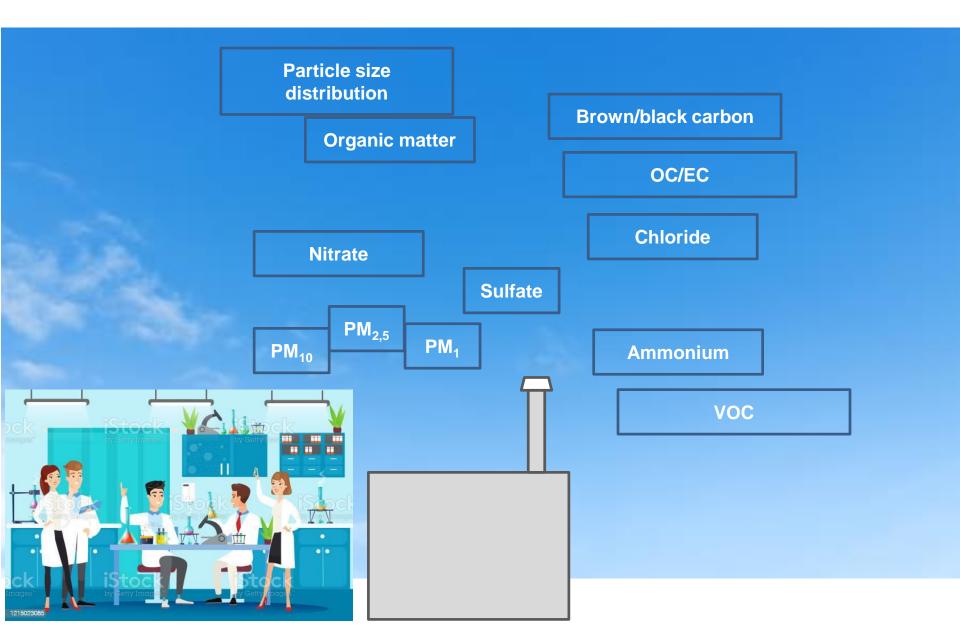

Amazing pictures revealing main paths and features.

Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A Prst multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Path Inder Satellite Observations, Geophys. Res. Lett., 42, 1984–1991, doi:10.1002/2015GL063040.

Why Ground Based measurements

Models

Global coverage and continuos in time.


Why Ground Based measurements

Ground Based measurements are important and needed for:

- > Satellite validation
- > Satellite algorithm improvement
- Model evaluation
- New method developments

Why?

- Higher possibility to control the measurement
- Strictly QA&QC procedures can be perfored
- Integration/synergy of instruments more feasible

General concept

sampling the air for **collecting particulate** on filter or **optically investigating** the sample

Different methods for collecting the particulate sample: gravimetric the most common

Mass of particulate below a certain diameter is obtained:

PM10<10micron

PM2.5 < 2.5 micron (fine particles)

PM1<1micron (ultrafine particles)

Chemical analysis can be done for the identification of species present in the sample.

Optical methods allow the determination of many aerosol optical and physical properties like:

- Backscatter coefficient
- Size distribution
- Absorption coefficient
- Organic versus Elemental carbon content

What is of interest for Dust indentification?

- PM10 as indicator of coarse particles
- PM10/PM2.5 as indicator of dominance of coarse particles
- Desert dust presence can be tracked using chemical tracer
 X-ray fluorescence (XRF), Inductively Coupled Plasma-Optical Emission
 Spectrometry (ICP-OES), or Ion Chromatography (IC)

There are methods for attributing PM observations to dust events for the aim of Air Quality Directive 2008/50 based on model tools and wind conditions. Spatial investigation needed with background site and temporal consistency.

Parameter	Concept	Strengths	Weaknesses		etwork/ ogramme
PM bulk concentrations	Dust contribution to the collected PM can be estimated considering that dust	e collected PM density in distinguish dust no be estimated developed from other aerosol			ACTRIS in situ EMEP
	particles are big particles and that intrusions are	- standardized measurement	- different instruments, measurement		ESRL
	anomalies in the PM records	networks te	techniques and dust contribution		GAW-WDCA INDAAF
		calculation methodologies - full-size range of			EANET
			dust not always encompassed by the		EIONET
			PM metrics - low spatial density		EPA
		in developing countries			IMPROVE
PM chemical	Presence of mineral elements into PM	- very reliable estimates of dust	 very expensive and laborious 		ACTRIS in situ
composition	samples allows the dust contribution	component	- difficult to apply		EMEP
	estimation		routinely		GAW-WDCA
			- limited availability, mostly		EANET
			limited to short-term campaigns		EIONET
					EPA IMPROVE

Parameter	Concept	Strengths	Weaknesses	etwork/ ogramme
Visibility	Visibility in absence of clouds and precipitation is related to aerosol	- good spatial and temporal coverage	 visibility reduction due to the presence of hydrometeors (fog, rain, etc.) site dependent relationships 	NOAA ISD IMPROVE
Dust	Deposition on filters or concentration at	- limited data availability		CARAGA
deposition	surface in dust	- heavy		EMEP
fluxes	source region can be simply regarded as	measurement load		INDAAF
	dust	- data heterogeneity		EANET
Dust physical	Absorption	- standardized	- variable spatial	GAW-WDCA
properties	photometers, nephelometers, APS and OPC instruments derived size distribution	measurement techniques - distinctive dust optical properties	density	

How it works

Photometer points at Sun and measures radiance at different wavelengths.

Modelling the Solar radiation outside atmosphere and molecular absorption due to gases in atmosphere, observed differences are due to the aerosol presence.

The **Aerosol Optical Depth** is therefore retrived (primary measurement).

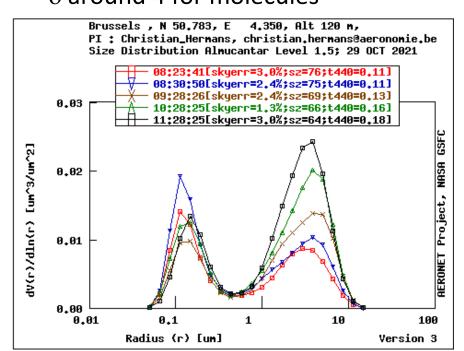
Nowadays advanced instruments allow the measurements using Sun, Moon and Star radiation as reference.

Measured quantities

Aerosol Optical Depth at different wavelength

Angstrom exponent δ : exponent in the power law for AOD with wavelength $AOD_1=AOD_2 (\lambda_2/\lambda_1)^{\Lambda}-\delta$

The highest is δ the smaller are the particles.


Values between -1 and 4

Inversion products

Size distribution typically up to 10 micron

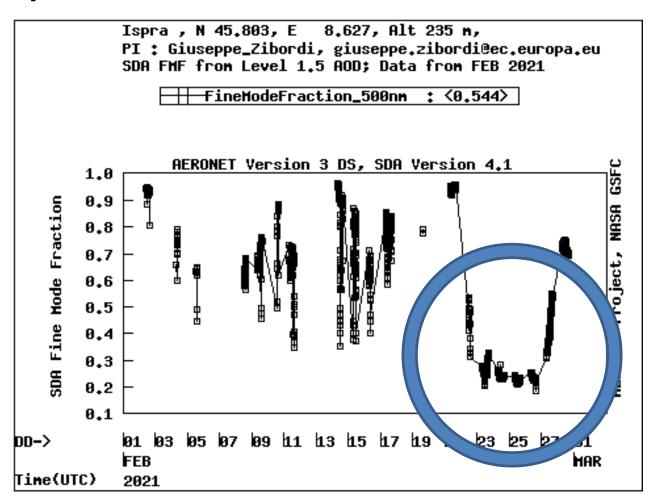
AOD coarse fraction: Fraction of AOD due to particles larger than 1 micron

 δ around 4 for molecules

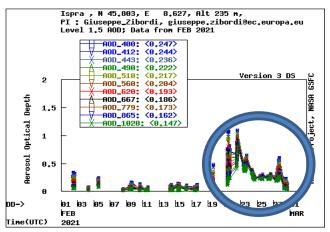
Dust AOD (DOD)

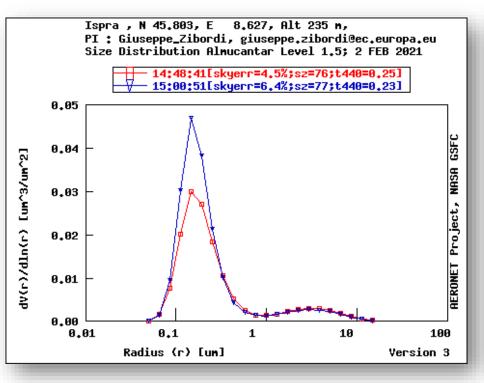
☐ Angstrom below a certain threshold (and AOD higher than a threshold too)

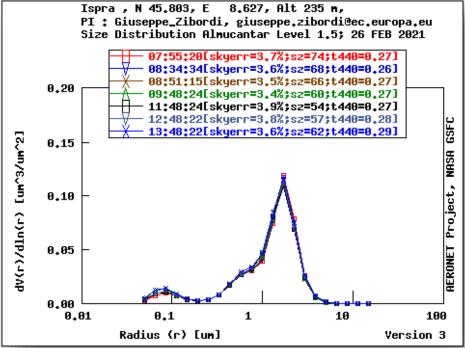
(e.g. Basart et al., 2009; Todd et al., 2007)

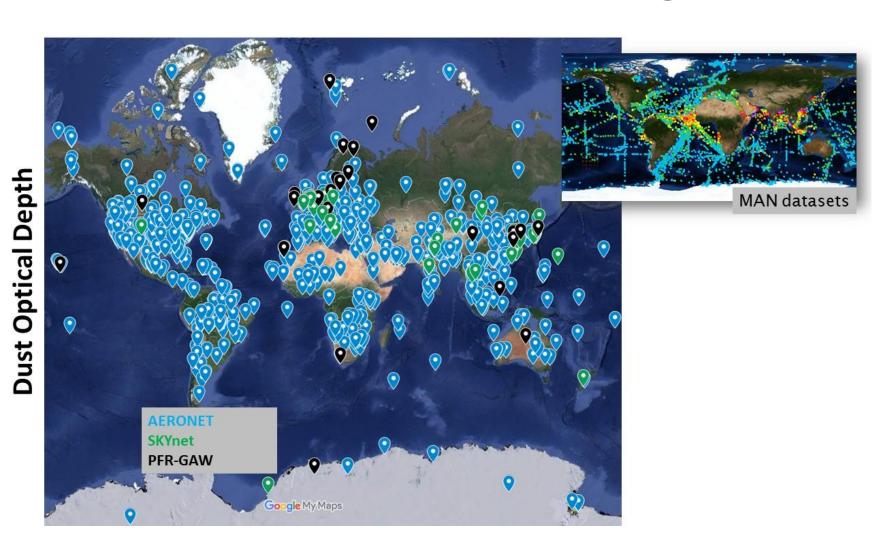

□ DOD = AOD for the coarse mode (more appropriate for site distant from the source)

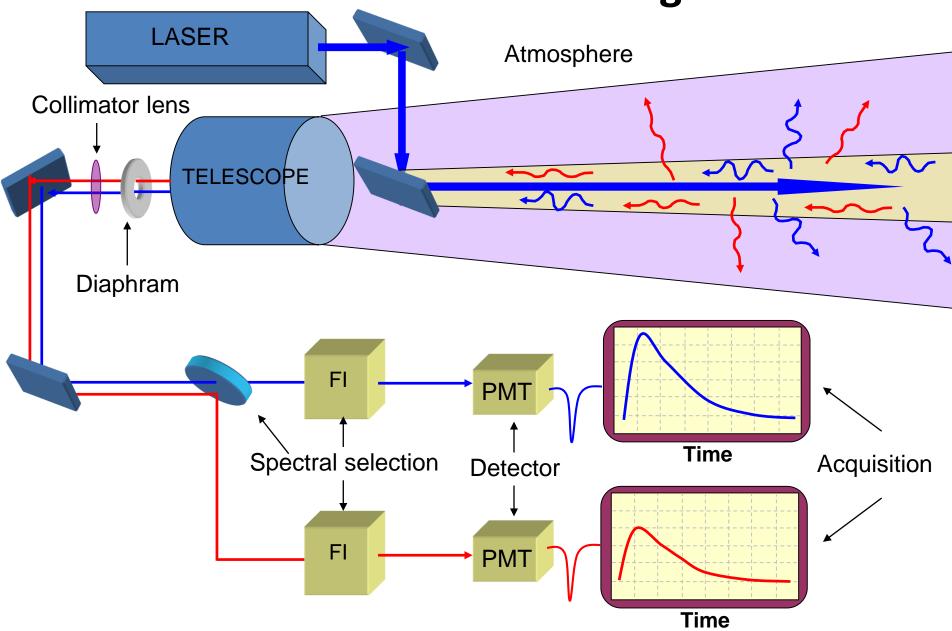
(O'Neill et al., 2003)


Advanced lidar/photometer products provided fine and coarse mode concentration profiles (uncertainty not fully assessed)


(Dubovik et al., 2014)


Example


Example



Parameter	Concept	Strengths	Weaknesses	Networks/Programmes
Dust Optical Depth	Dust contribution to the AOD (primary measurement) is obtained considering that coarse particles are dusty particles	 high spatial density in developed countries based on well assessed primary products 	-different methods (and uncertainty) in dust component evaluation - cut-off in retrieval algorithm (50 μm) not covering the complete dust size distribution - asphericity of the dust particle is still a critical point for inversion products (depending on the used algorithm for the dust contribution estimation) - data are typically limited to daytime condition and not cloudy scenes	□ AERONET □ SkyNet □ PFR-GAW

N	1	ea	IS	u	re	m	1e	nt	te	3 C	h	n	ic	Ιl	le	S
														_		

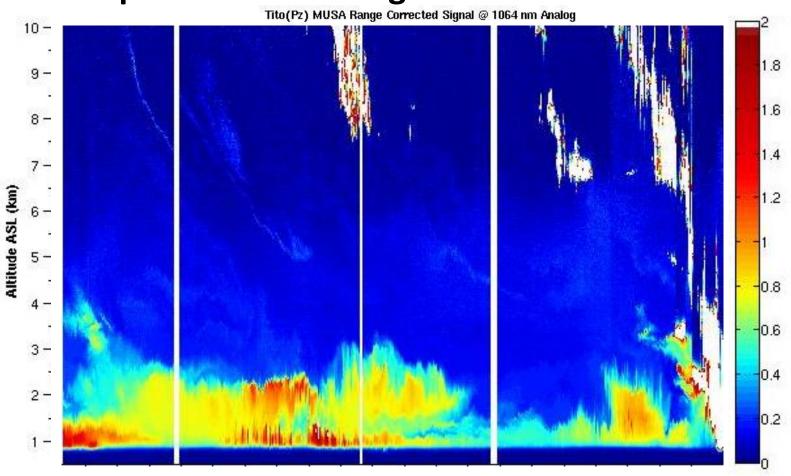
☐ Elastic lidar

Detection only at same wavelength of emitted laser light

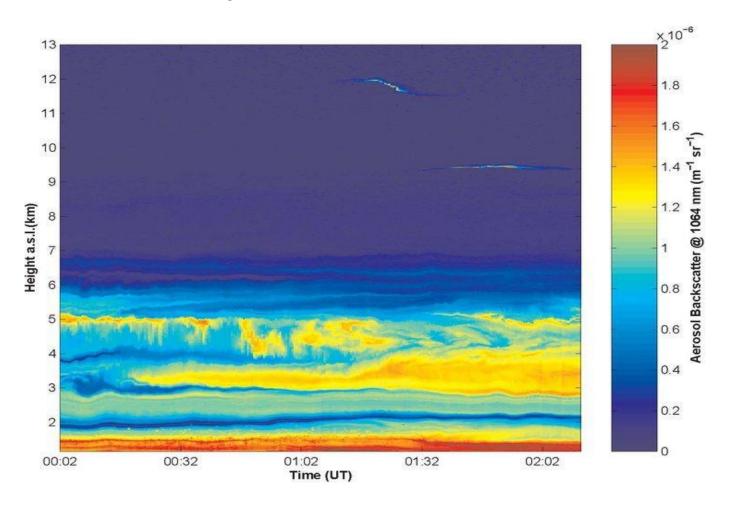
☐ Raman lidar

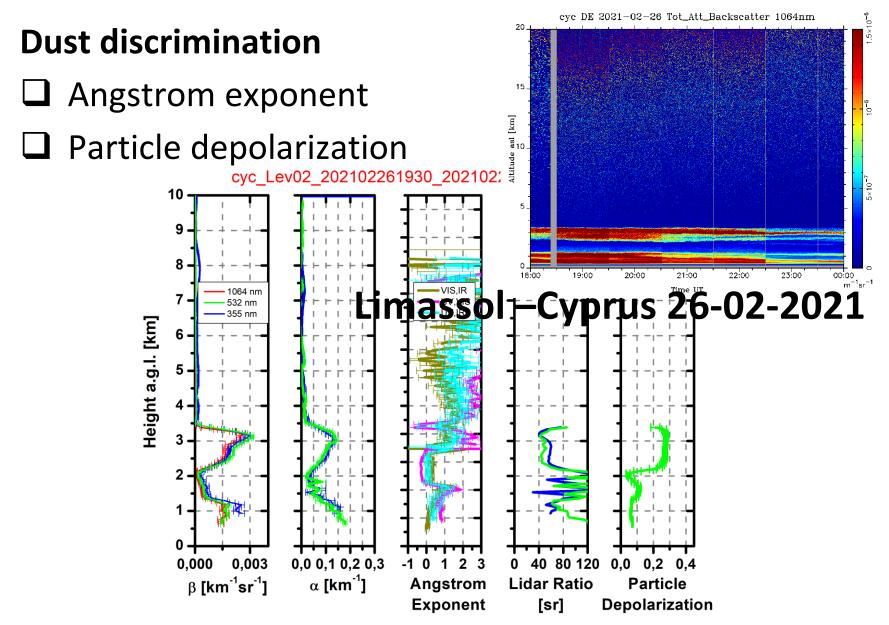
Detection tuned on shift for molecules present in atmosphere for aerosol extinction measurements

☐ High Spectral Resolution Lidar (HSRL)

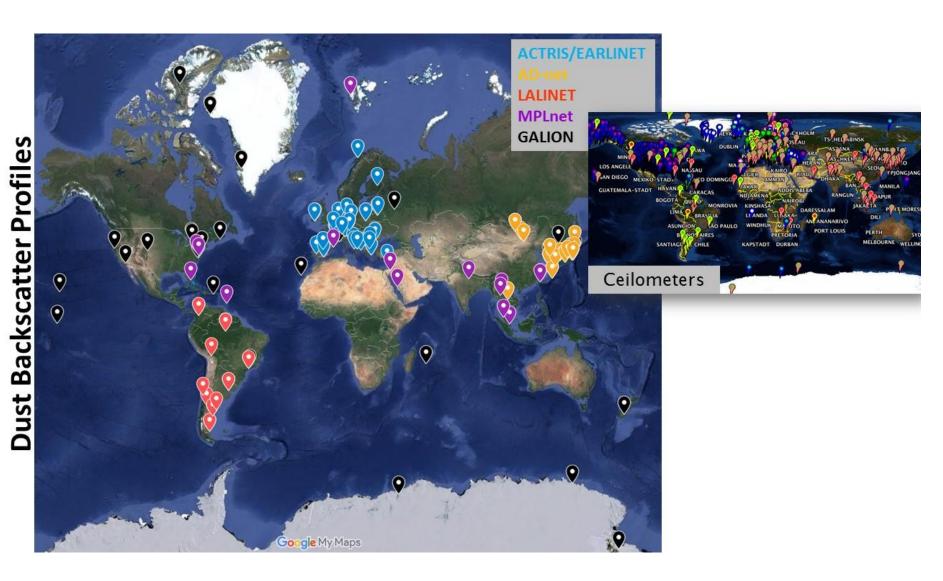

interferometrically separates the elastic aerosol backscatter from the Doppler broadened molecular contribution.

Ceilometer?


A low power elastic lidar

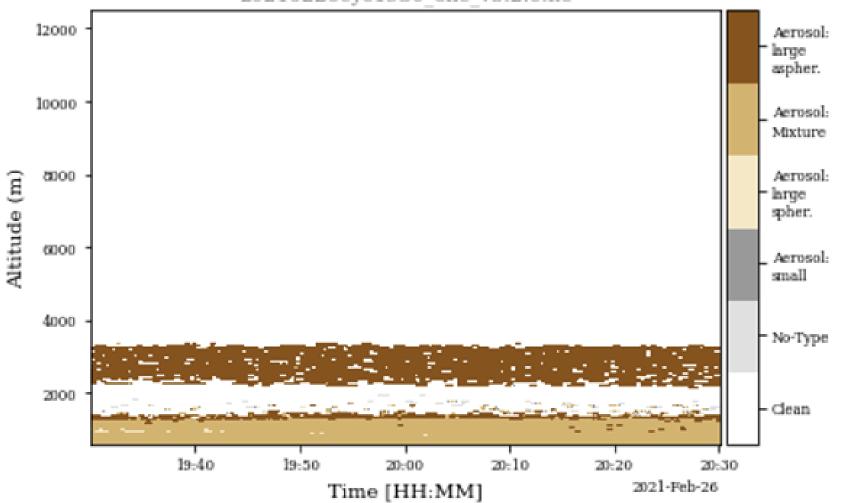

Meas	sured aerosol parameters
□ A∈	erosol backscatter coefficient
(rel	evant assumptions if elastic lidar)
□ Ae	erosol extinction coefficient
(for	Raman and HSRL)
☐ Lie	dar ratio (i.e. extinction to backscatter ratio)
(for	Raman and HSRL)
☐ Ar	ngstrom exponent
(fo	r multiwavelength lidar)
lf equi	ipped with depolarization channel
□ Vo	olume depolarization ratio
☐ Pa	article depolarization ratio

Lidar remote sensing Example of collected signals



Dust arrival example - 26 June 2006 Potenza IT

Parameter	Concept	Strengths	Weaknesses	Networks/Programmes
Dust Backscatter & extinction profiles	Particle depolarization measurements enable to identify the dust component in the aerosol backscatter &extinction profiles obtained by lidar measurements	- High vertical resolution - Possibility to investigate copresence of different aerosol type at different altitudes - Possibility to investigate layer below clouds	 No other depolarizing particles considered in the dust attribution Different setups mean different assumptions and uncertainties Typically, not available 24/7 Lower uncertainty in nighttime condition Low clouds and precipitation inhibit the measurements 	 ACTRIS/EARLINET AD-net LALINET MPLnet GALION E-profile(for ceilometers)
Dust Mass Concentration profiles	Dust backscatter profiles are used typically as input for deriving the extinction profiles and then through some assumptions (algorithm) the mass concentration profile	-High vertical resolution - Main required information for aviation purposes - Synergy of lidar and photometer plus retrievals can reduce the total uncertainties	-30-60% for Raman/HSRL lidars (even up to 100% for particles larger than 15μm) -Additional uncertainty for backscatter lidars due to further assumptions (lidar ratio) -Errors of advanced retrieval algorithms still to be quantified -Typically not available 24/7 -Lower uncertainty in nighttime condition -Low clouds and precipitation inhibit the measurements	 ACTRIS/EARLINET AD-net LALINET MPLnet GALION



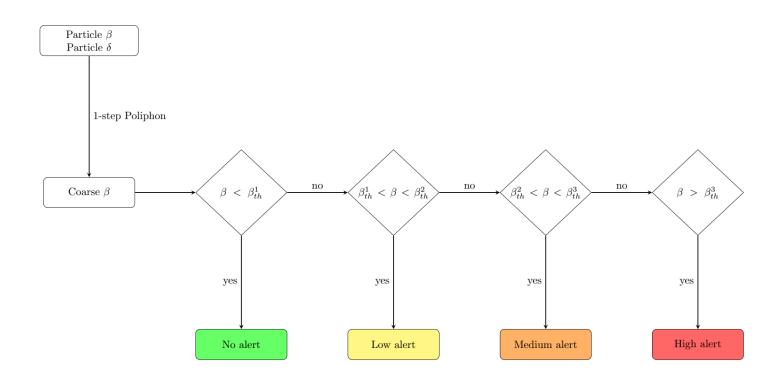
Promising dust lidar product

Target Classification

A lidar Early Warning System

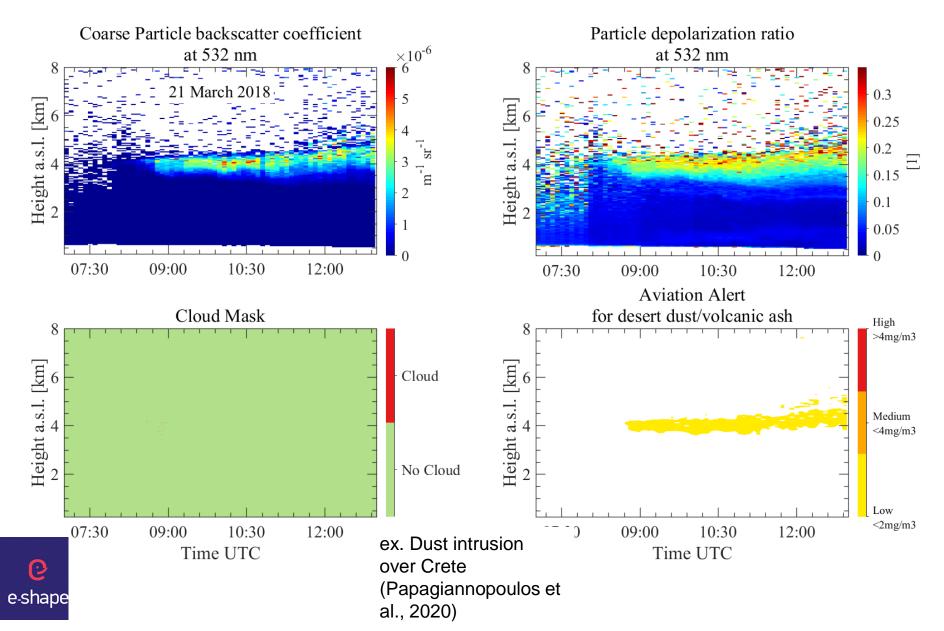
Dust (and volcanic ash) can be a hazard for aviation.

MODIS



A lidar Early Warning System ACTRIS

The developed methodology (Papagiannopoulos et al., ACP, 2020)


- uses **EARLINET/ACTRIS** high-resolution data for an EWS for volcanic dust/desert dust
- requires **single-wavelength** polarization lidar (i.e., particle β and δ).
- can be applied to other **networks** (e.g., MPLNET, LALINET, ADNET...).

A lidar Early Warning System ACTRIS

Take home message

- ☐ Dust contribution can be inferred by the different techniques and methods
- Methods are different and differences have to be taken into account
- Pro and cons different for each different technique