

The CM SAF CLARA-A3 Climate Data Record

Surface Radiation

Jörg Trentmann, Uwe Pfeifroth, Karl-Göran Karlsson, and the CM SAF Team

Energy Fluxes control the Earth's climate

Top of the Atmosphere

Surface Radiation Budget

Observations

Surface Surface budget Surface SW down SW up SH LH LW up LW down imbalance Observations 188±6 23±3 24±7 88±10 398±5 345.6±9 0.6±17 -52 ± 14 W/m² 165 ± 9 W/m²/ 113 ± 23 W/m²

Source: Stephens et al., 2012

Surface radiation fluxes are driven by...

→ Shortwave / Solar

- Astronomy
- Cloud Cover / Properties
- → Water vapor / Aerosol / Ozone
- → Surface Albedo

Well known / Can be derived from satellite measurements.

Longwave / Thermal

- → Low-level temperature and water vapor
- Cloud base height
- → Land / Sea Surface Temperature
- Surface Emissivity

Not well known / Can not be derived from satellite measurements. Additional sources of information required.

Satellite retrieval of surface radiation / CLARA-A3

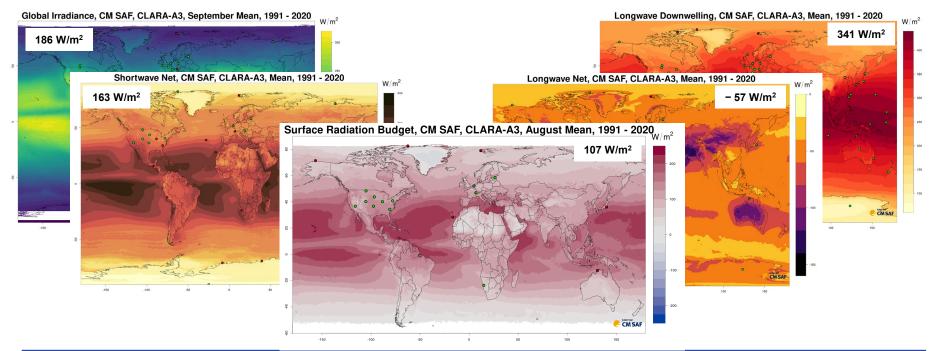
→ Shortwave / Solar (SIS, SNS)

- → If no cloud is detected (CMAprob), estimate clear-sky surface irradiance (I_{i.clr}) with RTM
- → In case of cloudy pixel (CMAprob), the reflected solar flux (RSF) is related to transmissivity / irradiance (I_i) (using a LUT)
- → ERA-5 (incl. surface albedo!) and monthly climatological aerosol data used as auxiliary data
- → Daily clear-sky irradiance $(I_{dm,clr})$ is used to constrain daily all-sky irradiance SISdm: $I_{dm} = I_{dm,clr} *^{\sum I_i}/_{\sum I_i \ all}$
- → Net shortwave radiation (monthly) estimated using surface irradiance (daily) and surface albedo (pentad)

→ Longwave / Thermal (SDL, SNL)

- → Use ERA-5 monthly surface longwave fluxes
- (Simple) correction applied based on monthly CLARA-A3 cloud fraction
- → Downwelling (SDL) / net longwave (SNL) radiation

→ Surface Radiation Budget (SRB)

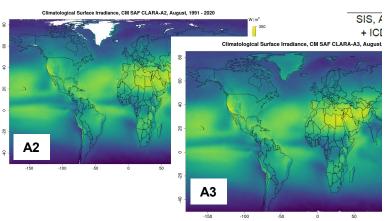

→ Sum of monthly net shortwave and net longwave fluxes

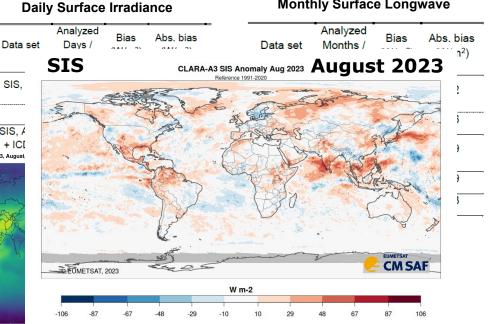
CLARA-A3 Climatological Surface Radiation Data (1991 – 2020)

→ Shortwave / Solar → Longwave / Thermal

What's new in CLARA-A3 (compared to CLARA-A2)?

- New parameters: net solar / thermal fluxes, surface radiation budget
- Improved satellite input data (e.g., extended temporal coverage / better calibration)
- Use of improved input parameters (for solar radiation)
 - → (probabilistic) cloud mask, CMAprob
 - reflected solar flux, RSF
- → Use of ERA-5 surface albedo (climatology was used in CLARA-A2)

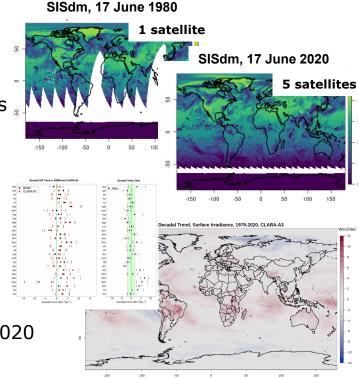



Monthly Surface Longwave

Advantages of CLARA-A3 (compared to CLARA-A2)

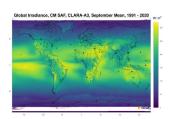
SIS.

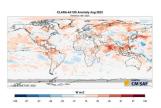
- High and improved quality
- Better spatial data coverage
- CDR + ICDR allow global climate monitoring

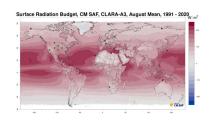


Some known limitations

- Solar Radiation data records are spatially not complete:
 - Individual daily means may contain (many) miss adata (due to reduced satellite coverage)
 - Missing data values also in monthly SIS / SNS / SRB data records
- → Longwave data heavily depends on ERA-5
- Temporal variability of aerosol optical depth not considered -> long term trends should be carefully evaluated
- → Temporal stability affected by degraded calibration (starting approx. 2018) -> estimated trends after 2020 are not reliable!







Summary

- → CM SAF CLARA-A3 provides global high quality data of Shortwave and Longwave Surface Radiation Fluxes and the Surface Radiation Budget
- → Data quality (and availability) much improved compared to previous CLARA editions / competitive with alternative international data records
- → Available climate data (1979 2020) and near-realtime data provision (timeliness 10 days) allow climate monitoring.
- → The presence of missing data needs to be considered when analyzing the data

