

ASMET African Satellite Meteorology Education and Training

Identifying Clouds using Satellite Imagery

Matshidiso Mogale- SAWS

14 May 2024

In this presentation:

- 1. Cloud Types
- 2. Convective <u>VS</u> Stratiform clouds
- 3. How to identify clouds using a Satellite imagery
- 4. Identifying clouds by thickness
- 5. Identifying clouds by cloud top heights

How well do you know your clouds?

<u>Clouds</u>

2. Convective VS stratiform clouds

Convective Clouds	Stratiform Clouds
Form in unstable conditions	Form in stable conditions
Grow vertically	Layered, grow horizontally
Large vertical extent, small horizontal extent	Small vertical extent, large horizontal extent

On the satellite Imagery, these clouds will appear:

4. IDENTIFYING CLOUDS BY THICKNESS

- Visible Channels are the most useful products to determine cloud thickness.
- The brightness of clouds indicates its thickness
- Opaque vs Translucent:
 - > Opaque clouds= thick clouds
 - Translucent/semi-transparent= thin clouds

High reflectance Very thick clouds

Very thin clouds over land

Very thinclouds overocean9

Identifying clouds by thickness

• Natural Colors RGB is also useful in determining cloud thickness.

• Also helps to know cloud types:

Туре	Thickness	Appearance	
Cumulonimbus	Thick	Deep cyan	
Cumulus	Variably thick	Cyan	
Stratus	Variably thin	Very light cyan to white	
Cirrus	Thin	Light cyan & translucent	

Colour	Channel	Physically relates to	Smaller contribution to the signal of	Larger contribution to the signal of
Red	NIR1.6	Cloud phase Snow cover	Ice clouds Snow covered land/sea ice	Water clouds
Green	VIS0.8	Cloud optical thickness Green vegetation	Thin clouds	Thick clouds Snow covered land Vegetation
Blue	VIS0.6	Cloud optical thickness Green vegetation	Thin clouds Vegetation	Thick clouds Snow covered land Vegetation

- Difficult to identify thickness of all clouds on other products because of channel composition:
 - Infrared imagery: thermal based, best for cloud top temperatures, best to determine thickness by cloud type and other features.
 - <u>Water Vapour</u>: difficult to determine cloud edges & surface features
 - <u>Severe Convective RGB</u>: tailor made for convective storms, difficult to pick up some low-stratiform clouds.
 - <u>Airmass RGB</u>: suitable for distinguishing air masses hence difficult to determine surface features

Identifying clouds by thickness: Challenges

EUMETSAT

2023-04-22 12:00:00 UTC

5. IDENTIFYING CLOUDS BY CLOUD TOP HEIGHTS

- Easy way is to use visible channels to determine cloud type based on its texture & shape as discussed
- The cloud type tells its height.
- Sun angle affects interpretation of the clouds:
 - Can make clouds dramatically different at different times of the day
 - $\,\circ\,$ Can help with shadows

- Quantitate way to determine cloud height is by using Infrared images to determine cloud top temperatures:
 - Brighter colours = colder temperatures=higher cloud tops
 - Darker colours = warmer temperatures = lower cloud tops
- Also works with the water vapour channel for convective clouds penetrating into the mid and high levels.

Visualised Products: Cloud Top Height

Cloud Top Height - MSG - 0 degree

Identifying Dust cloud thickness using Dust RGB

Identifying clouds by cloud top heights: Challenges

- Difficult to differentiate clouds that are overlapping:
 Example: snow and clouds have similar brightness
 - Best to animate & look out for other features
- Difficult interpreting areas where there are thin upper clouds with clouds underneath:

 The entire cloud band will average out cloud temperatures to be warmer- the assumption would be that we dealing with clouds at a lower altitude

Identifying clouds by cloud top heights: Challenges

2022-06-15 06:00:00 UTC 0 UTC

• Useful RGB for cloud identification:

R = Channel 02 (VIS0.8) G = Channel 04r (IR3.9, solar component) B = Channel 09 (IR10.8)

Red: Cloud depth and amount of cloud water and ice, provided by the visible reflectance at 0.8 μ m.

Green: Cloud particle size and phase, approximated by the 3.9 μm solar reflectance component.

Blue: Temperature, provided by the 10.8 µm channel.

EUMETSAT

2023-05-22 11:45:00 UTC

temps

droplets

..... NEXT: Identifying convection, fog/low clouds & Dust