

World Meteorological Organization Working together in weather, climate and water

WMO Space Programme: Update

Stephan Bojinski

Virtual Lab Management Group, 6th Meeting

8-11 October 2012, São José dos Campos, Brazil

www.wmo.int/sat

World Meteorological Organization (WMO)

A United Nations Specialized Agency Working together in Weather, Climate and Water

- Founded 1950, successor to IMO (1873)
- Specialized agency of the United Nations for meteorology (weather and climate), operational hydrology and related geophysical sciences (e.g., atmospheric chemistry, oceanography, agriculture);
- UN "authoritative voice"
- 189 Member states and territories; "Permanent Representatives"
- Promote, foster, facilitate world-wide cooperation, with a focus on National Meteorological and Hydrological Services

World Meteorological Organization

WMO Programmes

World Weather Watch Programme	Marine Meteorology and Oceanography Programme		
Global Atmosphere Watch Programme	/MO Quality Management Framework		
World Weather Research Programme including THORPEX	Information and Public Affairs Programme		
Hydrology and Water Resources Programme	Voluntary Cooperation Programme		
World Climate Programme	Education and Training Programme		
World Climate Research Programme	WMO Programme for the Least Developed Countries		
WMO Space Programme	Regional Programme		
Public Weather Services Programme	Disaster Risk Reduction Programme		
Agricultural Meteorology Programme	Aeronautical Meteorology Programme		
Tropical Cyclone Programme			

+ Co-sponsored Programmes: GCOS, GOOS, GTOS, IPCC, ...

- Global Framework for Climate Services (GFCS)
- Integration of observation/information systems (WIGOS/WIS)
- Disaster risk reduction
- Support to Aviation
- Capacity building

(from WMO Strategic Plan 2012-2015)

WMO-CGMS VLab: Education and Training, Capacity building

A network of Centres of Excellence sponsored by satellite operators

- To provide training on meteorological and environmental satellite systems, data, products and applications;
- To foster research and the development of applications for societal benefit at the local level by the NMHS.

- Procedure for establishing Virtual Laboratory Centres of Excellence for Training in Satellite Meteorology <u>http://vlab.wmo.int</u> (updated Jan 2012):
 - Expectations for Centres of Excellence
 - Expectations for supporting satellite operators
 - Expectations for WMO, CGMS
 - Procedural steps

- Welcomed VLab expansion to 12 CoEs, allowing satellite training in all WMO languages and Regions
- Welcomed VLab widening its scope and audience, through partnerships
- Encouraged satellite operators to organize Regional Meteorological Conferences (including EUMETSAT, Asia/Oceania, GOES-related) to raise regional satellite user awareness and capacity

VLab Management Group

- The Vlab Management Group reports to WMO and CGMS
- Meetings in Darmstadt (2001), Barbados (2003), Boulder (2007), Langen (2008), Beijing (2010), São José dos Campos (2012)
- Virtual meetings : 3 times a year

Two Co-chairs, currently:

- Kathy-Ann Caesar, CIMH, Barbados
- Volker Gärtner, EUMETSAT
- Technical Support Officer:
- Luciane Veeck

VLab 5-year strategy (2009)

- Initial focus on education and training for satellite meteorology
- To expand to:
 - Climate
 - Disaster support (e.g., Fires)
 - Marine applications
 - Land applications
 - Hydrology
 - Atmospheric chemistry, air quality, dust
 - Environment
- Taking advantage of:
 - Technical progress, use of satellite data in combination with radar, NWP, lightning, in-situ obs
 - Shared resources
 - New satellite systems (operational, R&D)
 - Partnerships with other institutes
- Implementation Plan
- For discussion under item 17 on Thursday

WMO: Other VLab News

- Sustained funding mechanism for VLab TSO established, in partnership with CIRA / Colorado State University, USA
 - Dependent on annual contributions to WMO Trust Fund by satellite agencies in CGMS
 - KMA, NOAA/NESDIS and EUMETSAT contribute in 2012-13
- Translation (Fr, Ru) of COMET MetEd Environmental Satellite Resource Center website
- WMO-COSPAR partnership established
- Candidature of CoE Morocco (DMN, Casablanca) approved by WMO Commission for Basic Systems

WMO Global Survey on Use of Satellite Data 2012

- 227 responses from 96 countries
- First indicate that:
 - Satellite image interpretation
 - 48% receive training, 18% have unmet training needs
 - Satellite product utilization and interpretation
 - 38% receive training, 30% have unmet training needs
 - Preparation for new generation of satellites
 - 22% receive training, 38% have unmet training needs, 10% do not see a training need

WMO Survey 2012: Challenges in using satellite data

VLMG-6, São José dos Campos, Brazil, October 2012

WMO Survey 2012: Training needs

Table 11: Area where training is needed but not delivered for NMHSs and other operational agencies (regional breakdown)

WMO Region	NMHSs and other operational agencies							
	Total responses	Equipment operation & maintenance	Image interpretation	Use of software tools	Product utilization and interpretation	Physical basis for remote sensing	Preparation for new generation satellites	
RA I	32	11	7	15	14	14	17	
RA II	27	5	3	8	6	7	13	
RA III	10	4	5	6	7	4	6	
RA IV	21	4	5	8	6	5	8	
RA V	16	9	6	11	10	10	13	
RA VI	53	13	9	16	15	14	19	
All	159	46	35	64	58	54	76	

WMO Survey 2012 : Methods to deliver training

WMO Survey 2012: Knowledge of distance learning (NMSs)

VLMG-6, São José dos Campos, Brazil, October 2012

WMO Survey 2012 : Other methods to deliver training

- On the job training (e.g., at forecasters' desk)
- "send emails to marvellous satellite data team who always answer them right away"

Full Survey report available in Jan 2013

Thank you for

your attention

World Meteorological Organization

Backup Slides

Global Observing Systems

Space-based or surface-based remote sensing and in-situ measurements

WMO observing systems:

- Global Observing System (GOS)
- Global Atmospheric Watch (GAW)
- WMO Hydrological Cycle Observing System (WHyCOS)
- Future Global Cryosphere Watch (GCW)

Co-sponsored systems:

- GOOS (Ocean monitoring)
- GTOS (Terrestrial monitoring) (GCOS includes GAW, GOS, GOOS, GTOS)

Can't Imagine Life Without Satellite Data

Sustained Real-time Observations of the Atmosphere, Oceans, Land and Sun vital to NOAA Operations and Research

0 0

Compared number of satellite/conventional observations used by ECMWF (millions per day)

.

"To promote wide availability and utilization of satellite data and products for weather, climate, water and related applications of WMO Members"

Space-based Global Observing System (June 2012)

- **12 operational geostationary satellites** (plus back-up) for permanent weather watch with quasi-global coverage USA (3), EUMETSAT (3), China (2), India (2), Japan, Rep. Korea
- 6 operational sun-synchronous (plus back-up) global VIS/IR/MW imagery, IR/MW sounding, scatterometry, GNSS radio-occultation USA (3), China (2), EUMETSAT
- ~ 30 R&D satellites in sun-synchronous or inclined orbit for land/ocean surface, O3, GHG, clouds, aerosols, radiative balance, altimetry, GNSS RO, precipitation radar
- More than 50 satellites in operational service, carrying more than 120 instruments

Global Space-based Inter-calibration

CMA-CNES-EUMETSAT-IMD-ISRO-JAXA-JMA-KMA--NOAA-NASA-NIST-Roshydromet-USGS-WMO

LEO-LEO intercalibration

More on: <u>http://gsics.wmo.int</u>

•Routine IR inter-calibration against IASI and AIRS on simultaneous overpass

• VIS and MW calibration under development GEO versus LEO

Strategy towards effective use of satellite data

- Satellite observation capability
- Sustained and quality-controlled products
 - Cooperative development and validation
 - Sharing products based on community requirements
- Data access systems
 - Dissemination services (IGDDS initiative of DVB-S networks)
 - User receiving / processing equipment and software tools
- Adapting the services to the needs
 - Formulate user requirements
 - Dialogue between users and providers to include new data/products

- User awareness, education and training
 - Information on systems, products, access
 - Training on data/product access and applications

Data accessibility

- Promote integrated dissemination services (e.g. EUMETCast)
- Support standardization of Direct Readout services
- Implement WIS standards and best practices
- Identify requirements for additional data to be disseminated

Space Programme trends and challenges

- Trends
 - Satellites are the largely dominant data source for weather and climate modelling
 - Comprehensive, diversified constellations to meet weather / climate requirements
 - Integrating « R&D » and « Operational » components
 - « Data explosion » with onset of advanced sensors (e.g. hyperspectral)
- Challenges
 - Continuity of essential climate measurements (e.g. O₃, GHG, radiative balance..)
 - End-to-end Architecture for Climate Monitoring from Space (with CGMS and CEOS)
 - Funding situation of key programmes : cooperation to optimize the global system
 - Data quality and traceability for consistent climate records
 - Stringent timeliness requirements for polar-orbiting sat data
 - Standardization enabling efficient data management (metadata)
 - User guidance and regional capacity building
 - User preparedness for new satellite/instrument generations

ABI: Improved Resolution . .

Simulated "ABI" Spectral Bands:

Vertical profiles of water vapour and temperature through inversion calculations; Trace gases (ozone, methane, carbon monoxide, NOx); Cloud properties

Conclusions

- Space-based observation is fundamental to weather and climate monitoring and forecasting and all their applications for public safety and socio-economic benefits
- Global coordination must be achieved
 - To avoid gaps and redundancies: optimize observation efforts
 - To ensure interoperability of datasets,
 - To harmonize products when relevant
 - To align on best practices
- Upcoming technology and capabilities offer considerable opportunities ... and challenges to the users

