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1 Introduction  
 
 The EUMETSAT Satellite Application Facility on Land Surface Analysis (Land-SAF) generates, 
on an operational basis, Vegetation Parameters (VEGA) from the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) satellites (Schmetz et al., 2002; 
Trigo et al., 2010). The VEGA products are the Fractional Vegetation Cover (FVC), the Leaf Area 
Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR). This 
document details the algorithm used for the retrieval of these products. There are two version of 
each product, the daily products MDFVC (LSA-401), MDLAI (LSA-404) and MDFAPAR (LSA-
407) and the 10-day products MTFVC (LSA-402), MTLAI (LSA-405), MTFAPAR (LSA-408). The 
methodology detailed here applies also to the re-processed VEGA dataset – LSA-450 (MTFVC-R), 
LSA-451 (MTLAI-R), LSA-452 (MTFAPAR-R). 
The products are computed from level 1.5 SEVIRI data corresponding the short-wave channels 
at 0.6 μm (VIS1), 0.8 μm (VIS2) and 1.6 μm (NIR). The VEGA products are generated at full 
spatial resolution (3 km/pixel sampling distance at nadir), for 4 different geographical areas 
within the MSG disk (i.e., Europe, Northern Africa, Southern Africa and South America, see 
Figure 1) as well as in a single MSG-Disk product covering the full the Meteosat disk. 
 

Euro

NAfr

SAme

SAfr

Euro

NAfr

SAme

SAfr

 

Figure 1 - The LSA SAF geographical areas. 

 
 
The monitoring of earth surface dynamic processes requires global observations of the structure 
and the functioning of vegetation. Among the several state variables, the FVC, the LAI and the 
FAPAR are key variables for a wide range of land biosphere applications. The FVC represents 
the fraction of green vegetation covering a unit area of horizontal soil. The FVC determines the 
partition between soil and vegetation contributions for further estimates of total emissivity and 
temperature. LAI is a quantitative measure of the amount of live green leaf material present in 
the canopy per unit ground surface. The FVC and LAI are important structural properties of land 
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surface areas occupied by plant canopies, which yield complementary information to describe 
the three-dimensional structure of the vegetation attributes.  FAPAR is a measure of how large a 
fraction of the sunlight leaves absorb in the 0.4–0.7 μm spectrum. FAPAR expresses a canopy’s 
energy absorption capacity and is thus a key variable in models assessing vegetation primary 
productivity and, more generally, in carbon cycle models (e.g. Sellers et al., 1997; Gobron and 
Verstraete, 2009). 
 
The present document is one of the product manuals dedicated to LSA SAF users. The algorithm 
theoretical basis of the vegetation parameters of the daily (MDFVC, MDLAI and MDFAPAR) 
and ten-day (MTFVC, MTLAI and MTFAPAR) Vegetation Products generated by the LSA SAF 
system are described in the following sections. The characteristics of SEVIRI based VEGA  
products provided by the LSA SAF are described in Table 1. Further details on the LSA SAF 
product requirements may be found in the Product Requirements Document (PRD) and the 
Product User Manual (PUM) which are available on the LSA SAF website 
http://landsaf.meteo.pt). 
 
Table 1.-  Product Requirements for MSG VEGA products, in terms of area coverage, resolution and 
accuracy. 

Resolution  Accuracy 

Product  Identifier  Coverage  Temporal  Spatial  Threshold  Target  Optimal 

MDFVC  LSA‐401  MSG disk  1‐day  MSG pixel  20%  15%  10% 

MTFVC  LSA‐402  MSG disk  10‐days  MSG pixel  20%  15%  10% 

MDLAI  LSA‐404  MSG disk  1‐day  MSG pixel  1,5  1  0,5 

MTLAI  LSA‐405  MSG disk  10‐days  MSG pixel  1,5  1  0,5 

MDFAPAR  LSA‐407  MSG disk  1‐day  MSG pixel  20%  15%  10% 

MTFAPAR  LSA‐408  MSG disk  10‐days  MSG pixel  20%  15%  10% 

 

2 Theoretical Framework 

2.1 Introduction 
 

The FVC and LAI are important structural properties of land surface areas occupied by plant 
canopies, which yield complementary information to describe the three-dimensional structure of 
the vegetation attributes. For fully and healthy developed canopies, LAI indicates the amount of 
green vegetation that absorbs or scatters the solar radiation in determining the characteristics of 
the remote sensing signal. In other words, it represents the interface between the soil background 
and the atmosphere for the energy and mass exchanges. The scaling effect is quite important for 
LAI and only marginal for FVC because this latter is quasi-linearly related to the reflectance 
(Malingreau and Belward 1992, Weiss et al. 2000). FAPAR is generally well correlated with the 
LAI, the more for healthy fully developed vegetation canopies. FAPAR depends both on canopy 
structure, leaf and soil optical properties and irradiance conditions (Baret and Guyot, 1991). 

The FVC determines the partition between soil and vegetation contributions for further estimates 
of total emissivity and temperature. For such, an accurate assessment of FVC is mandatory for a 
thorough description of land surface processes in the surface parameterisation schemes 
implemented in the climate and weather forecasting models. FVC is generally close to FAPAR 
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with the advantage of being defined independently of illuminations conditions making it an 
intrinsic canopy attribute. Besides, the FVC is relevant for a wide range of Land Biosphere 
Applications such as agriculture and forestry, environmental management and land use, 
hydrology, natural hazards monitoring and management, vegetation-soil dynamics monitoring, 
drought conditions and fire scar extent. The LAI is a key input of Numerical Weather Prediction 
(NWP) models, regional and global climate modelling, weather forecasting and global change 
monitoring. Besides, the LAI is relevant for Land Biosphere Applications such as agriculture and 
forestry, environmental management and land use, hydrology, natural hazards monitoring and 
management, vegetation-soil dynamics monitoring and drought conditions. FAPAR has been 
recognized as one of the fundamental terrestrial state variables in the context of the global 
change sciences (Steering Committee for GCOS, 2003; Gobron et al., 2006). It is a key variable 
in models assessing vegetation primary productivity and, more generally, in carbon cycle models 
implementing up-to-date land surfaces process schemes (e.g., Sellers et al., 1997). Besides, it is 
an indicator of the health of vegetation. 
 
FVC, LAI and FAPAR are used extensively to represent vegetation abundance and canopy 
structure and reflect changes in vegetation from global to local scales because they echo to rapid 
changes in climatic conditions or environmental stress factors. For effective use in coarse scale 
models, these variables must be collected over a long period of time and for all ecosystems of the 
terrestrial surface. To resolve rapid changes of vegetation status and amount under both the 
influence of climate and human activities, relatively high frequency observations are required, 
currently provided by the SEVIRI instrument. 
Many available global maps used in climate and NWP still depend on land cover classifications 
or are based on correlation between vegetation properties and simple spectral indices (e.g. 
ECOCLIMAP). However, in the last few years, methodologies have been developed to estimate 
land surface bio-physical parameters from large scale optical sensors in an operational way. In 
addition to remove atmospheric effects from the signal, algorithms for retrieving vegetation 
parameters from wide FOV sensors should deal properly with the anisotropic behavior of 
surface’s reflectances. These algorithms have been implemented in operational processing lines 
to provide advanced bio-physical products from POLDER (Leroy et al. 1997, Roujean and 
Lacaze 2002), MODIS and MISR (Knyazikhin et al. 1999), MERIS (Gobron et al. 1999, Bacour 
et al. 2006, Baret et al. 2007), SEAWIFS (Gobron et al. 2001), VEGETATION (Baret et al. 
2007, Bartholomé et al. 2006) and GLOBCARBON (Plummer et al. 2006, Deng et al. 2006).  

These operational methods can be roughly divided in two large groups: (i) Methods based on 
determining relationships (e.g. transfer functions) between vegetation indices and biophysical 
parameters and (ii) methods based on the inversion of physical models. The transfer function 
algorithm is associated with uncertainties originating from the calibration of the semi-empirical 
model, and the applicability of the algorithm to a range of vegetation types, angular 
configurations, seasons and locations.  

Radiance measured by sensors inevitably consists of radiance from multiple ground cover 
because of surface heterogeneity at sub-pixel scale and the contribution of the neighbouring 
pixels due to the sensor's PSF. Taking also into consideration the influence of soil background in 
traditional vegetation indices as well as the influence of sun/view configuration in spectral 
reflectance, it is thus clear that we need to define more general statistical relationships based on 
simulations. Gobron et al (1999) proposed an optimisation of vegetation indices for retrieving 
FAPAR, based on simulations of a radiative transfer canopy model. Operational processing lines 
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for retrieving FAPAR from MERIS (Gobron et al. 1999) and SeaWiFS (Gobron et al., 2002) are 
implemented using this method.  

Methods based on the inversion of physically based models are theoretically powerful and they 
can potentially be applied to varying surface types. The primary limitation of this approach is the 
difficulty in determining all the input parameters of the model properly, along with the fact that a 
different set of parameters may yield to very similar spectro-directional signatures leading to 
unstable solutions (Weis and Baret, 1999). Many inversion methods utilize one-dimensional or 
turbid models, thereby assuming surface homogeneity within an image pixel. Hence the sub-
pixel mixing of land cover types, which is especially common at coarse resolutions satellites due 
to the complex spatial patterns of sub-pixel vegetation cover, is usually ignored. One practical 
solution to this problem is the linearization approach, which moreover permits modeling of 
spatial heterogeneity explicitly. 

The process of identifying the sub-pixel proportions of the constituent components is called 
spectral mixture analysis (SMA). SMA approaches are methods especially adequate for global 
studies, since the spatial variability within pixel is high. It is assumed that the random variables 
associated to each ground cover component are statistically independent, implying that there is 
no significant multiple scattering  between them, i.e. all photons reaching the sensor have 
interacted with just one cover type. The use of SMA is widely accepted because they yield an 
understandable solution to the complex problem of mixed reflectance. A variety of studies have 
supported this assumption on a number of space-borne sensors, including TM, AVHRR, 
VEGETATION and MODIS (e.g., Defries et al. 2000, Camacho-de Coca et al. 2004; García-
Haro et al. 2005a; Fisher and Mustard, 2007). 

 

 

2.2 Algorithm description   

The LAI is estimated from a FVC using a semi-empirical approach as in Roujean and Lacaze 
(2002). This method relies on a tractable physical model for interception of solar irradiance by 
vegetative canopies. The vegetation canopy is represented by a semi-infinite plane-parallel 
horizontally homogeneous layer. The medium is characterized by the total leaf area index and 
the mean leaf inclination function. A clumping index is introduced to account for non-
randomness in the leaf spatial distribution. Its use allows for improved estimation of radiation 
interception and for unbiased estimates of true LAI in highly clumped canopies such as conifer 
and tropical forests. 

Thus the algorithm for retrieving FVC and LAI relies on optimised SMA methods. This 
approach has consistently proven to improve in the accuracy of the estimates compared to 
traditional remote sensing techniques that use unadjusted spectral vegetation indices (Gilabert et 
al. 2000; Peddle et al., 2001; Hu et al., 2004). The suitability of using this algorithm was 
demonstrated in García-Haro et al. (2004). Traditionally, spectral vegetation indices were 
developed using information obtained only in the red and near infrared wavelengths. The 
incorporation of information from the middle infrared, MIR (i.e. channel 1.6 of MSG) bands 
tends to improve the estimation because channels in the MIR have been observed to exhibit the 
greatest degree of sensitivity to changes in LAI (Chen et al. 2002). 
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A statistical approach is proposed for retrieving daily FAPAR from BRDF data, corrected of 
surface’s reflectance anisotropy and minimising the effect of soil reflectance (Roujean and 
Bréon, 1995). The principle of the algorithm is based on simulations of visible and near infrared 
spectral reflectance values in optimal angular geometries identified based on numerical 
experiments (simulations of a radiative transfer code). A vegetation index, called RDVI 
(Renormlized Difference Vegetation Index), is introduced, which shows to be less sensitive to 
background reflectance variability. A pre-established relationship is then applied between RDVI 
computed in an optimal angular geometry and daily FAPAR.  

FAPAR algorithm was successfully applied and validated using different coarse spatial 
resolution sensors, including POLDER/ADEOS (Roujean and Lacaze, 2002), and 
POLDER/PARASOL showing a good consistency with ground truth (Baret and Pavageau, 
2006). In order to evaluate the performance of this algorithm against other methods, the 
algorithm was applied to VGT (VEGETATION/SPOT) CYCLOPES L3A data, and compared 
with the CYCLOPES L3B FAPAR product (Baret et al., 2007) and MODIS C4.1 products. The 
inter-comparison was carried out over one-year of data for the European continent. This exercise 
demonstrated the good spatial and temporal performance as compared with equivalent satellite 
products of the Roujean and Bréon model (Verger et al., 2006).  The suitability of using this 
algorithm for retrieving FAPAR from SEVIRI data was investigated in Camacho-de Coca 
(2007). 

The application of LSA SAF methodology to VGT data representing an optimal BRDF sampling 
(García-Haro et al. 2005b) outperforms the results from other SMA literature methods such as 
MESMA (Roberts et al. 1998), VESMA (Camacho-de Coca et al. 2004) and VMESMA  
(García-Haro et al 2005a). The LSA SAF methodology was applied to VGT data and the results 
were compared with ground truth based maps distributed on Europe and representing different 
continental biome types and conditions, obtaining excellent results (RMSE values of 0.08 for 
FVC, 0.22 for LAI and 0.07 for FAPAR) although over a limited number of sites (Verger et al. 
2007). In addition, the prototype of LSA SAF LAI product with VGT and MODIS data over 
Europe was compared with CYCLOPES LAI (Baret et al., 2007) and MODIS LAI C5 
(Knyazikhin et al., 1999) products showing the reliability of the LSA SAF LAI algorithm 
(Verger et al., 2009). 

 

2.3 Algorithm inputs   
 
LSA SAF algorithms to retrieve FVC, LAI and FAPAR rely on the use of optimal geometries, 
which reduces the uncertainties resulting from different canopy types and background reflectance.  
 
The algorithms use as input the directional coefficients of the BRDF model for the different spectral 
channels resulted from simulating the BRDF following the general expression presented by Roujean 
et al. (1992): 

),,(fk),,(fkk),,(R sv22sv110sv     (1) 

where  ,, sv  stand for the sun zenith, view zenith and relative azimuth angles, respectively, and 

f1, f2 stand for the geometric and volume scattering kernels, respectively. The normalisation of the 
image to a common geometry solves the major source of uncertainty on wide FOV sensor’s data, 
which is introduced by the anisotropy of surface’s reflectance. The negative impact due to view/sun 
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angles variations in surface reflectance are thus minimized because the products are derived using 
the same geometry for the whole SEVIRI disk. 

While the FVC and LAI products rely only on the k0 BRDF parameter, the FAPAR relies on the use 
of the three BRDF parameters.  Inputs for retrieving FVC are thus atmospherically corrected cloud-
cleared TOC k0 parameters (Daily, 10-Day) in the three relevant SEVIRI spectral channels: red 
(VIS-0.6), near-infrared, NIR (VIS-0.8) and middle-infrared, MIR (IR-1.6). Physically the k0 
parameters correspond to isotropic reflectance, i.e. reflectance factor values directionally normalized 
to reference illumination and observation zenith angles of 0°. This geometry leads to a minimum 
contribution of the shadow proportion (hotspot geometry) and a physically correct estimation of 
FVC (Roujean and Lacaze 2002), coinciding with the complement to unity of the gap fraction at 
nadir direction. Estimating the FVC with increased values of the sun zenith would lead to an 
overestimation of FVC. At this geometry, however, the contribution of illuminated soil background 
is significant, constituting thus a source of “noise” that has long been recognized as major problem 
in remote sensing of vegetation (e.g. Huete et al. 1988). 

Inputs for retrieving FAPAR are atmospherically corrected cloud-screened TOC ki parameters 
(Daily, 10-Day) in two SEVIRI channels: red (VIS-0.6) and near-infrared, NIR (VIS-0.8). The 
quality of the SEVIRI BRDF parameters has been addressed in a related document 
(SAF/LAND/UV/VEGA_VR/2.1). Problematic areas with large BRDF uncertainty values 
correspond to high latitudes over Europe and in South America. k2 product presents generally the 
largest uncertainties as well as shaky temporal profiles (only for daily products) in other regions, 
particularly in Western Africa and regions in the south hemisphere. The quality of the FAPAR is 
directly related to the BRDF quality, whereas FVC and LAI uncertainties are associated to the 
quality of k0. 
 
 

2.4 FVC Algorithm description 
    
The algorithm to estimate the FVC assumes that observed variability in the mixed pixels arises 
from the intraclass variability of mixed pure classes representing the target (vegetation) and the 
soil background. In general, target and background are non Gaussian with unknown probability 
density function. In practice, this involves that large number of pixels representing each class is 
available or that the parametric modeling of the distribution of each class is available. The 
algorithm relies on a probabilistic SMA method in which endmember signatures are no longer 
treated as constants, but they are represented by multi-modal probability density functions. The 
use of standardized SMA improves understanding of the impact of endmember variability on the 
derivation of subpixel vegetation fractions at a global scale. 

Notationally, let r be the spectrum of each mixture pixel, i.e. a column vector (r1,r2,...,rn), where n is 
the total number of bands. The traditional SMA assumes that r can be approximated by a linear 
mixture of endmember reflectances E weighted by their corresponding fractional proportions f: 

r =E f +   (2)  

where E [nc] is the matrix of endmembers, f is a vector with the c unknown proportions in the 
mixture, and  is the residual vector. In the classical SMA methods, the within-class variability of 
the endmembers is usually regarded as noise (fluctuations around the expected values) attributed to 
variations of physical factors such as humidity, soil types, topography. This variability is pooled into 
a residual term , that would ideally be a multivariate normal distribution with mean zero. The 
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mixing equation is accompanied by two constraints: (1) the normalisation constraint says that a pixel 
is well defined by its components, whose proportions or abundances should therefore add up to 
unity, and (2) the positivity constraint says that no component of a mixed pixel can make a negative 
contribution. 

The observed reflectances are usually correlated and moreover affected by measurement errors and 
therefore it is convenient to search for the best solution in a statistical sense and to quantify the 
uncertainties of the retrieved parameter estimates. The least-square principle establishes that the 
unknown parameters are those that minimise the Mahalanobis distance between the pixel r and point 
E f: 

2 =(r – E f)
 T

 V(r)
 -1

 ( r – E f) (3) 
 
where V(r) denotes the error matrix of the observations r. 
 
The effectiveness of the linear mixture model is dependent on the degree of separation of the 
different signatures, as well as the level of noise which is present in the scene. This imposes clear 
limits on the number and similarity of the land cover classes that can be reliably distinguished. SMA 
methods usually use a few endmembers to represent the entire scene, which is a significant 
simplification since they do not fully identify the less prevalent materials in a multispectral scene. 
Besides, many of these methods assume that EMs cannot form linear expressions of one another (i.e. 
they may not have a non-singular matrix).  
 
The intra-species spectral variability, lighting and topographic effects, uncertainty related to 
apparent surface reflectance retrievals, and noise in field or image endmembers are sources of 
uncertainty that compromise the ability to retrieve relevant information using SMA. Since 
vegetation in different ecosystems are spectrally dissimilar to typical green vegetation, SMA 
using only green vegetation spectra will lead to significant errors of FVC. It is an essential 
dilemma in SMA that the continuous variation of endmember signatures demands more 
endmembers to represent them, while the limited dimensionality of coarse resolution remotely 
sensed data necessitates fewer endmembers (Song, 2005). Several efforts have been recently 
conducted in the SMA literature to account for the natural variability in material spectra with a 
relatively high degree of success (Bosdogianni et al.1996, Roberts et al. 1998; e.g. Bateson et al. 
2000; García-Haro et al 2005a; Song 2005). The algorithm adapted a variable multiple 
endmember spectral mixture analysis (García-Haro et al. 2005), in which soil and vegetation 
components are represented by a multi-modal probability density function. 

 
Figure 2 illustrates a schematic representation of the problem in a two-dimensional (e.g. the red-
NIR) space. The proposed method assumes that at a SEVIRI spatial resolution, any point in the 
vegetation region can combine with another point in the non-vegetation region to produce a mixture 
signal. Both vegetation and non-vegetation classes are represented by a multi-modal distribution 
attributable to differences due to biophysical and biochemical composition. Rather than a single 
signature to represent a certain vegetation species or soil type, its entire variability is accounted for 
by using Gaussian probability densities. This addresses more reliably the pixel deviations from its 
expected value due to the natural variability of the scene materials.  
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Figure 2 - Illustration of the probabilistic mixing model concept for 2 band case. Drawn are 
isoprobability contours (Gaussian clusters) associated with pure endmembers, i.e. feasibility regions 
on the spectra of the constituents due to the natural variability in the material itself and other effect 
such as atmospheric/illumination conditions and data noise. 
 
The coarse spatial resolution of SEVIRI data poses a significant challenge for endmember selection 
in traditional SMA. The algorithm assumes that each unknown pixel can be modelled by those 
candidate models (i.e. pairs of vegetation and soil subclasses) which are compatible with the SMA 
assumptions (i.e. they should lie on the “extended convex hull” defined by the model). The design of 
the algorithm is based on a five-step procedure (see figure 3). A brief summary of the main 
algorithm steps is now given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 - Flow chart of the algorithm for FVC determination. 

 
An important improvement of the VEGA version 3.0 to guarantee the success of modelling approach 
is the accumulation of temporal information. Two composite k0 images were generated, a vegetated 
one corresponding to the peak of season and a devegetated one corresponding to the minimum 
canopy closure. The goal was to select the observation, on a per pixel basis, from all high quality 
observations (cloud- and snow-free) over a one year period to construct a composite k0 image 
reflecting the period which present the maximum/minimun vegetation activity, based on the FVC 
annual cycle. Different vegetated/devegetated k0 images were computed for several years in order to 
assess the possible influence of the intra-annual variability and select the most appropriate year. 
These composite images have critically contributed to the success of step 1 (to more reliably identify 
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bare soils and very densely vegetated areas) and step 3 (allowing to improve the identification of 
soil/vegetation models for each pixel). 
 
Step1. Definition of an exhaustive training data set 
The aim is to provide an adequate characterization of the variability of the pure components. Soil 
(bare soil, rock or human-built surfaces) and vegetation (which is prevalent in crops, herbaceous or 
forest ecosystems) classes are represented by a large number of training set of pixels. A large robust 
database allows to minimize the effect of noisy observations, inaccurate atmospheric correction and 
adverse environmental conditions. 
The training process makes use of the very detailed information over the SEVIRI geographical areas 
coming from land cover classifications and other validated biophysical products. In the current 
(v3.0) version, the selection of vegetation/soil pure pixels used the vegetated/devegetated k0 images 
and relied on a multi-criterion approach which considers different data sources. 

(i) The training samples were chosen to lie in the borders of the convex hull of the red (0.6 μm), NIR 
(0.8 μm) and MIR (1.6 μm) SEVIRI channels, for the two k0 composite (vegetated/devegetated) 
images 

(ii) The samples were chosen to be homogeneous (ideally covered by a single surface type at the 
coarse SEVIRI resolution) based on GLC2000 classification. Some selected pixels were further 
examined based on fine resolution imagery (e.g. CORINE-100m over Europe, MOD13Q1 
reflectance 250-m, Landsat reflectance 30-m).  
(iii) Some samples were also added based on ancillary data and exploiting the availability of 
homogeneous Belmanip sites, the GOFC-GOLD Reference Data Portal and crowdsourcing data 
such as Geo-Wiki (Fritz et al. 2009). 

(iv) Temporal curves of FVC (version v2.1) were to examine seasonal profiles. The >8% percentile 
for soil and >92% perecentile for vegetation were considered to exclude non pure pixels. Training 
areas of non-vegetated class included desert areas, with practically no trace of vegetation along the 
year. Other land cover classes such as sparsely vegetated and shrubland land cover types were 
selected to represent the underlying soil background in most vegetated areas. 

(v) Endmembers are not merely represented by the most spectrally pure targets but they should span 
over a wider confidence region. A growing region algorithm was used to increase the number of 
pixels within a 5x5 pixel neighbourhood. The variability of the pixels that represent the local pure 
classes is then responsible for the uncertainty with which the mixture proportions can be identified. 
 
Samples were further verified using two different purity methods, the convex hull and the unmixing 
abundances computed in an iterative process, and the possible outliers were filtered out. Pixels 
having less than 90-95% of soil/vegetation were thus excluded. Finally, a cross-checking with 
validated LAI MODIS and Copernicus Global Land products was used to confirm that no outliers 
were present (samples were within the <15% percentile of LAI values for soil and >85% percentile 
for vegetation). 
 
 
Step 2. Gaussian Mixture Model of the vegetation/soil components 
 
The analysis method is probabilistic, based on the assumption that the observations in the k-th class 
are generated by a probability specific to that class k. The usual assumption is that Gaussian 
distribution function may accommodate the variability of the different soil types and vegetation 
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varieties that can be found in the scene. For a vector x  n the class conditional distribution is 
given by 

   





  
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n

kkk  xxx 12/12/

2

1
exp)2(),|(   (4) 

   
Each Gaussian (cluster) is described by its mean vector k and covariance matrix k. Geometric 
features (shape, volume, orientation) of the clusters are determined by the covariances k, which may 
also be parameterized to impose cross-cluster constraints. In general, it corresponds to a long, thin 
ellipsoid for soil components and spherical shapes for vegetation components (see figure 4a). The 
model thus incorporates the noise and variability of the sample data into statistical limits around 
each cluster centroid.  
 
However, the samples selected include a variety of vegetation species (i.e. they do not comprise of 
pure stands of a single species). Although the variability of each class can be assessed using a 
nonparametric representation of the constituent pure classes (Petrou and Foschi 1999), a parametric 
flexible model is preferred to fit the training data. A mixture model weighted sum of Gaussian 
distributions (or clusters) fk has been selected, which consists of a linear combination of normal 
distributions (Bishop 1995): 





jG

k
jkjkkkjkjkjf

1

),|(),|(  xx   j = s,  v   (5) 

where k is the probability that an observation belongs to the k-th component ( 



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k
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1

1;0  ), j 

represents the soil (s) or vegetation (v) component, and Gj the number of Gaussian components. This 
idea has been suggested a number of times in the literature (eg. Scott 1992) and is the basis of 
mixture discriminant analysis (MDA). This reflects a common situation where different types of 
background or vegetation varieties are present in the same pixel.  
 
The algorithm uses the Expectation-Maximization (E-M) approach (McLachlan and Krishnan, 1977, 
Bishop 1995) to estimate the means jk  and covariances jk the individual Gaussian components, 

which shows to be an efficient method when the number of Gaussians is defined beforehand. This 
iterative approach can be shown to converge if the data conform reasonably well to the model and 
the iteration is started at reasonable values. The goal is to maximize the likelihood of observed data. 
The K-means algorithm was used to initialise the E-M parameters ),( jkjk  . Multiple initializations 

were made to avoid numerical problems local maxima. 
 
A necessary input is the number and type of distributions. There are trade-offs between the choice of 
the number of clusters and that of the clustering model. Our requirement for this choice is that the 
number and type of distributions must provide a faithful representation of the data. If a simpler 
model is used, then more clusters may be needed to provide a good representation of the data. If a 
more complex model is used, then fewer clusters may suffice. As a simple example, consider the 
situation with a single Gaussian cluster whose covariance matrix corresponds to a long, thin 
ellipsoid. If a model with equal-volume spherical components (i.e. the model underlying the k-means 
method) were used to fit this data, then more than one hyperspherical cluster would be needed to 
approximate to the single elongated ellipsoid. A typical number of 4-5 Gaussians has been used to 
represent the variability of the soil and vegetation components over the different SEVIRI 
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geographical areas. Although the selection of the database and tuning of EM parameters was made 
separately for each SEVIRI region, pixels from other regions presenting similar characteristics were 
added. This may have favoured that no discontinuity in the retrievals is observed in the borders 
between adjacent regions. 
 
Step 3. Model selection 
Let us define a model Mk as a pair of class-conditional distributions for vegetation-soil, i.e. 

),( )'()( ksoilkvegK ffM  . The algorithm computes all possible models by taking all possible pairs 

{M1, M2, MN} since at SEVIRI spatial resolution, any vegetation variety could combine with any 
non-vegetation type to form a mixture signal. Let )( KM be the a priori probability of having the 
model Mk at a particular pixel. A Bayesian approach, which is based on minimization of the Bayes 
risk most often seen in classification problems, is used for the model selection. The basic idea is that 
the posterior probability or membership of model KM  given pixel data r, namely )|( rKMp , is 

proportional to the probability of the data given model Mk, namely )|( KMp r , times the model’s 

prior probability )( KM : 
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This approach assigns a weight to the models Mk according its posterior probability in the mixture 
pixel r, )|( rKMp . Although a priori probabilities are often unknown and taken to be equal, they 

provide a means to inject prior information in the algorithm. A priori probabilities )( KM were 
used to reduce the possibility of the misidentification of the models based upon prior-knowledge 
about the statistical distribution of the reflectance for the main land cover classes.  
 
The class-specific probability of each individual pixel, )|( kMp r , can be obtained as follows: 
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'')'()()( ),,(),|()(),|()|( xx'rx'xx'xr    (7)  

 

where ),,( rx'x  is an "accept-reject" function that is the unity when the line joining x (vegetation) 
and x' (soil) intercepts the region in the feature space centred at the mixture r, and is zero otherwise. 
 
Solving the integral (7) basically consists in counting the number of model samples from each 
possible mixture combination that can give rise to the mixture pixel r. We considered around r an 
envelope volume V(r) given by the radiometric uncertainties attached to the input, i.e. the 
covariance structure of the k0 product. This integral can be solved using either quadrature rules or 
Monte Carlo methods (i.e. from endmember spectra drawn from multivariate normal distribution). 
 

Although the analysis can be applied using as input a single date (as in version v2.1), the optimal 
results can be achieved if multiple observations over a seasonal period are available. An important 
improvement was made in version v3.0 to more reliably determine the probability of soil/vegetation 
models by considering simultaneously the dates of maximum/minimum canopy closure (i.e the 
vegetated/devegetated k0 images). For example, the devegetated image would correspond to periods 
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that do not have significant vegetation cover during the dry season (e.g. harvested crops) allowing 
thus improve identifying the spectral characteristics of underlying soil background. 

The mixing space concept is illustrated in figure 4, which corresponding to the training soil and 
vegetation samples identified in Africa. Bare areas should be predominantly found in certain bare, 
sparsely vegetated and open shrublands (GLC2000 classes 19, 14 and 12) whereas purely vegetated 
areas should be mostly found in close forest classes, herbaceous and croplands (GLC2000 classes 1, 
2, 13 and 16). The best suited number of mixture components (gaussians) was 4 for vegetation and 5 
for soil. 

 

 
Figure 4 - Illustration of the probabilistic mixing model concept over Africa regions in the k0 space 
of the red (0.6 μm), NIR (0.8 μm) and MIR (1.6 μm) SEVIRI channels. Drawn are isoprobability 
contours (Gaussian clusters) associated with pure endmembers (V1-V4 for vegetation typs and S1-
S5 for soils). BED and BDF refer to broadleaved evergreen and broadleaved deciduous forest, 
respectively. 

 

We can observe that there is a high variability in soil background reflectance. In general, desert areas 
present abnormally high values in the red channel, with practically no contrast between red and NIR 
and, therefore. However, the spectral properties of these bare areas does not fit well the reflectance 
of underlying bareground in the vegetated areas, which in general presented darker reflectance. 

The use of temporal information allows for improved identification of the spectral characteristics of 
vegetation and underlying soil background. This is illustrated in figure 4 for an open broadleaved 
deciduous pixel. Blue symbols correspond to the migration of this pixel during an entire year (at a 
decade time step and numbered from 1 to 36). The greater the amount of vegetation present, the 
greater the NIR reflectance and the lower the red reflectance. The period of drier conditions (decade 
8) correspond to the devegetated period, in which the pixel situates relatively close to the soil line. 
After the start of development phase, it departs from the soil line, eventually reaching a high canopy 
closure. The maximum (vegetated) and minimum (devegetated) FVC values were marked as solid 
diamond and start, respectively, in the k0 feature space. The use of reflectance in these two periods, 
allowed identifying the most likely models for the vegetation (V1 and V4) and soil (S2), i.e. the 
darkest soil type. 
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Step 4. Estimation of FVC 
A feature extraction step consists of mapping the input vector of observations r  n (in our case, 
n=3) onto a new feature description u  m. Our purpose is allowing the classes to be separated, and 
remove, as far as possible, noise and other errors of the inputs. In previous VEGA algorithm (v2.1 
version) the spectral dimensionality of the data was augmented, by adding an extra equation to the 
SMA. This is built by substracting the NIR and red channels: DVI= (k0)NIR - (k0)VIS. The difference 
vegetation index (DVI) is well related to the FVC (Roujean and Lacaze, 2002) and, as opposed to 
nonlinear transformations such as NDVI, preserves the problem linearity. However, in the current 
version (v3.0), no use of DVI is made. Instead, the strategy has consisted in decreasing the relative 
influence of MIR channel, since the vegetation retrieval is specially hampered by the influence of 
undesired soil variability in the MIR waveband. By promoting information in the red and NIR 
channels retrievals were less affected by the unmixing method used, reducing the retrieval error. 
This strategy has shown to be more necessary in low-vegetated areas since it mitigates the 
underestimation of FVC in areas with abnormally high MIR background reflectance and the 
overestimation of FVC over dark soils.  
 
A standardisation transform is applied, which transforms the data to a set of variations about the 
mean value with a mean value of zero and a standard deviation of one.  

r

r
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μ-r
r        (9) 

where r


 is the standardized vector associated to the pixel vector r, with mean rμ and standard 

deviation rσ . Using the standardised endmembers, iE


 (i =1,…,c), the unmixing is formulated as 

follows: 
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 is the proportion of such EM in the standardised coordinates, and   is the residual vector 

expressed in standardised units. Although the solution is similar to the conventional SMA, the sum-

to-one condition is now expressed as 
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We refer to this approach as standardized unmixing (García-Haro et al. 2005a). Through this 
standardization, SMA is less sensitive the brightness variability within each vegetation-soil 
component, at reducing the influence of external factors such as shading, brightness differences due 
to variability of surface roughness and terrain illumination. For example, spectra of very dense green 
vegetation corresponding to different canopy structures such as agricultural crops and forests, which 
are spectrally very different, become very similar after applying the standardization. 
 
SMA based on standardised signatures is performed for all possible models. The algorithm performs 
a standardisation on both the endmember and the image spectra as a previous step before applying 
the SMA. The fractions of soil and vegetation are calculated using the algorithm of García-Haro et 
al. (1996), which provides a unique and unbiased solution that is computationally fast. Let FVC(MK) 
be the fraction of vegetation obtained using the MK model. FVC is estimated as a linear combination 
of single-model estimates:  
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In this sum, the contribution of each model is weighted by its Bayesian a posteriori probability 
)|( rKMp . Although this approach is similar to other literature methods (e.g. Asner and Heidebrecht 

2002), the method is different since it decomposes the soil/vegetation into a number of subclasses 
and does not assume an equal model probability for the different subclasses. Rather, the Bayesian 
theory is applied which combines both, posterior and prior probabilities, of each class. 
 

The use of a temporally invariant model for soil substrate and vegetation types -based on the 
calculated memberships- offers a stable frame to assess the evolution of vegetation dynamics for 
long-term monitor and reduces errors due to an undesired over-stratification of the scene. 
 

 
Step 5. FVC uncertainty estimation 
 

The statistical confidence intervals of FVC predictions, Err(FVC), is assessed taking into account two 

different sources of error, namely SMA  and elmod , i.e.: 

   
2
mod

2)( elSMAFVCErr        (13) 

 

(i) Uncertainty due to the propagation of the input errors ( SMA ) 

The impact of input errors, Err(k0), on the prediction of FVC is assessed statistically taking into 
account from the usual error propagation laws as in the classical Spectral Mixture Analysis 
method. The inputs are treated as independent random variables with finite variances given by 
the covariance matrix of k0 BRDF product. It is assumed that they are uncorrelated. The 

analytical solution for the standard deviation of estimating FVC ( SMA ) can be found in García-

Haro et al. (1996). In addition to covariance matrix of k0 (i.e. the AL-C0-CK product), SMA  is 

also influenced by the zone-dependent separability between vegetation and soil optical 
components (García-Haro et al. 2004), and is generally higher for dark surfaces. Hence the 
quality of retrievals is generally larger over herbaceous and cultivated areas whereas less 
accurate estimates are expected over needle leaf forests.  

(ii) Uncertainty due to the model selection ( elmod )  

The second source of error, elmod , is due to the dispersion (variance) of the possible solutions. 

This error recognizes that each SEVIRI pixel may have various mixture models of different soil 
types and vegetation varieties, and is expressed as follows:  
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In general, the higher the number of candidate mixture classes contributing to the mixed pixel 

the higher the elmod  error. This error also penalizes pixels outside of the convex hull defined by 

the soil and vegetation densities (e.g. outliers, dark pixels along the coastline, etc.). The elmod  

errors have been partly reduced thanks to the aid of priori knowledge extracted from a land cover 
classification.  

 

While step 1 of FVC algorithm requires scientist guidance and oversight to inject information into 
the algorithm, steps 2-5 are fully automated. The first steps of the analysis (1-3) are computed 
beforehand and provide a set of auxiliary information, e.g. )|( rKMp . This increases the robustness 
of the algorithm and speeds up considerably the determination of the vegetation products. Further, 
for bare surfaces such as deserts, FVC is not computed but it is set to a zero value. Unvegetated 
areas are assessed by the agreement of the land cover classifications. 

Figure 5 allows understanding better the physical basis of the algorithm and provides details of its 
performance. The results correspond to an analysis performed over the European region using two 
different satellite scenes: VEGETATION/SPOT (figure 5a) and MSG/SEVIRI (figure 4b). The best 
possible prediction of FVC given a realized value of red and NIR, i.e. FVC=f(k0,red - k0,NIR), are 
obtained by averaging FVC values over pixels for which red and NIR fields fall in a sufficiently 
narrow interval. Although there is a one-to-one relationship between retrieved FVC and k0 field in 
the red-NIR domain (the algorithm uses also additional information), the triangle envelope formed 
by the data points (i.e. mixed pixels) is the physical basis for SMA. Non-vegetation features 
distribute primarily along the so-called “soil line”. Pure vegetation is assumed to be on the top 
vertex, although it exhibits also a significant spectral variability. 

Since green vegetation strongly absorbs solar radiation in the red spectral region, and strongly 
scatters it in the NIR, these two bands are widely used to characterize land surfaces from remote 
sensing data. The algorithm uses also MIR information, which provides useful information about the 
vegetation water content and mitigates the inaccuracy caused from saturation phenomena in 
estimating vegetation coverage. In the feature space of these three channels, the soil/vegetation 
components are spectrally distinct enough and the bands are sufficiently uncorrelated. The algorithm 
outperforms the common SMA approaches since: 
 

1. Unlike common SMA approaches, this method shows to be effective in incorporating 
detailed information about the soil and vegetation conditions in the scene through the 
training data provided in step 1. It is easily obtained from a visual inspection that unknown 
pixels that are similar to those in the training set present similar FVC values. Therefore, the 
algorithm has the ability to generalize valuable information ingested in step 1. 

2. The isolines capture the essential relationship between reflectance and FVC, showing a 
general agreement with literature studies (e.g. Huete et al. 1988). 

3. There is a gradual change in FVC reflectance along the “reflectance triangle”. This reduces 

SMA  errors, since they are proportional to the local gradient of FVC in the k0 feature space. 
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   (a)       (b) 

Figure 5 - Projection of the FVC estimates, as derived from two different scenes over Europe, onto 
the spectral k0,red - k0,NIR feature space (a) VGT data for the 15th of June 2003 and (b) SEVIRI for the 
19th of August 2005. In figure 5a, ellipses are projections of the ellipsoids defined by the covariances 
of the soil/vegetation Gaussian components (step 2). The isolines (lines connecting points of 
identical FVC) range from 0 to 1 FVC values at 0.04 spacing intervals. 

 
 

In general, most literature methods do not respond to gradual change in reflectance in a smooth way. 
Although the probabilistic unmixing is applied on a per-pixel basis, the estimator is regularized and 
tends to mitigate the effects of noise and isolated mixed pixels. A sensitivity analysis has proven the 
accuracy and reliability of the proposed approach compared to other literature methods (e.g. García-
Haro et al. 2005a). Estimated FVC is artefacts-free and spatially consistent (see examples in figure 
8). 
 

2.5 LAI Algorithm description 
 

The solution of the radiative transfer problem can be reduced to the problem of diffuse transmission 
of the solar radiation by a medium of finite optical thickness. Roujean (1996) proposed a tractable 
physical model for interception of solar direct irradiance by leaf canopies. Assuming that leaves are 
flat with bi-Lambertian properties (reflectances and transmittance are isotropic), the direct 
transmittance which represents the fraction of direct incident beam above the canopy which reaches 
the soil background level is given by the classical expression (Nilson, 1971): 

])/)((exp[)( LAIGT sssd                (15) 

where s=coss, being s the solar zenith angle and G(s) is the average extinction function (Ross, 
1981). The terms of single and multiple scattering are expressed in a similar form to (15) (see 
Roujean (1996) for details) and for the total transmittance the following simplified form is proposed: 

         ])/)((exp[)( LAIGbT sss            (16) 

where the backscattered parameter, b, is assumed equal to 0.945 for all vegetation types (see in situ 
measurements of b in Roujean et al. (1997), table 5).  

In this model, a random foliage distribution in the canopy is considered. It can be noticed that 
relative to a random leaf spatial distribution, clumpling enhances the probability of light penetration, 
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leading to a large underestimate of LAI if randomness is assumed (Roujean, 1996). Hence the 
correct formulation of the model interception is 

         ])/)((exp[)()( LAIGb1T1FIPAR ssss         (17) 

Ω is the clumping index (Nilson, 1971) which accounts for the degree of dependence of the 
vegetation stands position. Ω >1 for vegetation with a regular arrangement; Ω =1 when the foliage 
elements are randomly distributed; Ω <1 when the canopy is organized into clumps. The clumping 
index is an important input to global carbon and water cycle models (Chen et al., 2003).  

When the sun and the observer are both at zenith, FVC is equivalent to the fraction of solar radiation 
intercepted by the vegetation (Smith et al, 1993). Therefore, considering )0(  sFIPARFVC  , 

equation (17) yields (Roujean and Lacaze, 2002) 

))(exp( LAI0Gb1FVC s      (18) 

In equation (18), a value of 0.5 is adopted for the leaf projection factor G(s) considering spherical 
orientation of the foliage.  In order to avoid maximum LAI values in fully vegetated areas (i.e. when 
FVC 1) exceeding a value about 6-7, a coefficient a0 in the range (1.04-1.07) is introduced in (18): 

 )LAIb5.0exp(1aFVC o       (19) 

The clumping is assumed for simplicity to be homogeneous within each vegetation cover type. A 
cover-dependent empirical clumping index to each of the GLC2000 classes has been adopted. The 
values for each biome of the GLC2000 database, correspond to the maximum values from all valid 
retrievals as calculated from global POLDER multiangular data for the period November 1996 to 
June 1997 (Chen et al. 2005) and are shown in table 2. This assumption leads to a conservative first-
order correction of the clumping effect, which has been adopted to avoid a likely over-correction in 
erroneously classified biomes. Typical clumping values are 0.68 for evergreen forest, 0.77-0.79 for 
deciduous forest, and 0.83-0.85 for herbaceous, shrub and cultivated areas.  
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Table 2: Cover-dependent clumping index values for LAI algorithm based on the GLC2000 land 
cover classification based on values obtained in Chen et al. (2005). 
 

GLC200 
Class  

     Global Class name  
(according to LCCS terminology) 

Clumping 
Index  

1  Tree Cover, broadleaved, evergreen 0.68 

2  Tree Cover, broadleaved, deciduous, closed  0.79 

3  Tree Cover, broadleaved, deciduous, open 0.78 

4  Tree Cover, needle-leaved, evergreen 0.68 

5  Tree Cover, needle-leaved, deciduous 0.77 

6  Tree Cover, mixed leaf type 0.79 

7  Tree Cover, regularly flooded, fresh  water  0.69 

8  Tree Cover, regularly flooded, saline water, 0.79 

9  Mosaic: Tree cover / Other natural vegetation  0.82 

10  Tree Cover, burnt 0.86 

11  Shrub Cover, closed-open, evergreen 0.80 

12  Shrub Cover, closed-open, deciduous  0.80 

13  Herbaceous Cover, closed-open   0.83 

14  Sparse Herbaceous or sparse Shrub Cover 0.84 

15  Regularly flooded Shrub and/or Herbaceous Cover 0.85 

16  Cultivated and managed areas 0.83 

17  Mosaic: Cropland / Tree Cover / Other natural 
vegetation 

0.76 

18 Mosaic:  Cropland / Shrub or Grass Cover  0.81 

19 Bare Areas 0.99 

20 Water Bodies --- 

21 Snow and Ice --- 

22 Artificial surfaces and associated areas --- 

 
 
The theoretical uncertainty of LAI, Err(LAI) , propagates uncertainties attached to the FVC estimate, 
Err(FVC), and is also associated with the uncertainties of parameters a0, b and , according to the 
following expression:  
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where  
 ba1          (22) 

Typical uncertainty values adopted for the model parameters are: Err(a0)=0.03  and Err(a1)=0.04.  
 
 

2.6 FAPAR Algorithm description 

For the retrieval of daily FAPAR from space data without any prior knowledge on the land cover, a 
statistical relationship general enough for global applications (Roujean and Bréon, 1995) is defined 
based on simulations using the homogeneous SAIL model (Verhoef, 1984). The FAPAR 
information is derived from the red and NIR spectral bands. The SAIL model provides the BRDF 
data as well as the amount of radiation absorbed by vegetation. Inputs of SAIL model are leaf 
inclination distribution (LIFD), LAI, leaf transmittance, leaf reflectance and soil spectral albedo. A 
large number of vegetation canopy radiative transfer scenarios are simulated. The simulation 
includes a total of 5184 cases, by combining three LIFD (erectophile, spherical, planophile), eight 
LAI values (0.1, 0.3, 0.5, 1, 1.5, 2, 3, 4), 6 soil spectra and 36 combinations of leaves optical 
properties in the red and NIR spectral bands, assuming lambertian soil properties and leaf 
reflectance equal to leaf transmittance. The diffuse fraction of incoming radiation is held constant 
and equal to 0.2, which represents clear sky conditions. For each scenario, red and NIR reflectances 
with variations of sun and view zenith angle from 0º to 75º at interval of 15º, and variations of sun-
view relative azimuth from 0º (backscattering) to 180º (forward-scattering) each 45º are obtained. 
Finally, the daily FAPAR is computed by integration of the instantaneous FAPAR over the day: 

                                      



'

'

t

t

t

t

dtPAR

dtAPAR
FAPAR                                        (23) 

Where t and t’ are the time for sunrise and sunset. The FAPAR was integrated over solar angles 
corresponding to a target located at 45ºN latitude and at the equinox. 

The relationship between NDVI and daily FAPAR is analysed for the different geometries. Largest 
dispersion occurs when the sun is at zenith and sensor at nadir (i.e., k0 BRDF parameter used for 
retrieving FVC and LAI). The dispersion decreases as the sun and view zenith angle increases. This 
could be partly explained due to the optical path through the vegetation increases with sun zenith 
angles, and thus the background relative effect decreases (Roujean and Bréon, 1995). Among the 
many geometries investigated, some cases perform significantly better with approximately linear 
NDVI-FAPAR relationship and small dispersion. An optimal geometry based on the criteria of 
linearity and minimum dispersion between NDVI and daily-integrated FAPAR is found in the solar 
principal plane (θs=45º, θv=60º, =0º). The relationship is especially good when only one canopy 
type is considered. However, some dispersion is found between NDVI and FAPAR for low LAI 
values, which is explained by the influence of the background reflectance. Therefore, a vegetation 
index is proposed to minimize the soil reflectance effects, called RDVI (Renormalized Difference 
Vegetation Index), which has the same properties as NDVI for large LAI but performs better for low 
vegetation coverage. The RDVI is defined as follows: 
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Finally, the RDVI-FAPAR relationship in the optimal geometry is given in Eq. (25). In order to 
apply this relationship to remotely sensed data, it is needed first to be able of characterising the 
BRDF in order to compute the reflectance and thus the RDVI in the optimal geometry  
 

                                                    FAPAR=1.81*(RDVI)opt - 0.21                                    (25) 
 
Where (RDVI)opt refers to the RDVI computed in the optimal geometry. The reflectance in the 
optimal geometry (θs=45º, θv=60º, =0º) for each spectral channel is estimated from the Roujean et al. 
(1992) as follows: 
 

                                Ropt()= k0() - 0.240*k1() + 0.202*k2()       (26) 
 
 
 FAPAR uncertainty estimation 
 
The theoretical FAPAR uncertainty is assessed by mathematically differentiating Eq. (25) with 
respect to the theoretical input error. The error of the BRDF parameters correspond with the 
diagonal elements of the uncertainty covariance matrix (C00, C11 and C22 fields of the AL-Ci-CK 
product) obtained for the three model parameters (SAF/LAND/MF/PUM_AL/1.4). These values 
only quantify the uncertainties due to the non-correlated (random) part of the error structure; in 
addition correlated errors may occur owing to calibration uncertainties or systematic bias. Therefore, 
the theoretical FAPAR error can be estimated propagating input error through the model, which 
mainly depends in turn on the errors in the reflectance computed in the optimal geometry for red and 
NIR channels.  
 
The error of the FAPAR is computed as: 
 

)(.)( RDVIErr811FAPARErr       (27) 
 
The RDVI can be written as: 
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where R(Ci) is the reflectance in the optimal geometry in red (C1) and NIR(C2) channels. Thus, the 
error of the RDVI is written as: 

 

)()()(
)(

)(
)(

)( BErr
B

A
AErr

B

1
BErr

B

RDVI
AErr

A

RDVI
RDVIErr

2











   (29) 

 
The derivative of A and B with respect to the reflectance is written as follows:  

))(())(()( 1CRErr2CRErrAErr 
      (30) 
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Therefore,  
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Which can be written as:  
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Where Err(R(Ci)) in the optimal geometry used for retrieving the FAPAR is computed as:  

       
 )0.202 +  )0.240  ) 210 kErrkErrkErrRErr ((()( 

     (34) 

 
And the theoretical uncertainty of the directional error is given in the C00, C11 and C22 fields of the 
HDF5_LSASAF_MSG_AL-Ci-CK product.  
 
 
Figure 6 shows the FAPAR uncertainty computed as explained above with respect to the 
uncertainties of the k0 and k2 directional parameters for a fixed uncertainty of 0.01 in the k1 
parameter, and for both low and high FAPAR values. The variations of the input errors are in 
agreement with the range of uncertainties found in the BRDF product (see SAF/LAND/UV/ 
VR_VEGA/2.1-2 for more details). The largest uncertainties in the directional parameter are the 
largest the uncertainties in FAPAR are. A threshold based on the error of k2 equal to 0.25 has been 
used to blind unreliable FAPAR areas (with FAPAR error estimate larger than 0.2). The FAPAR 
error ranges typically between 0 and 0.2, with some cases showing an error estimate higher than 0.2 
which are mainly located over Europe in wintertime. Pixels with errors ranging between 0.2 and 
0.25 should be used with caution.  
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Figure 6 - Theoretical FAPAR error as a function of input k0 and k2 errors for a given k1 error of 
0.01. Two different cases have been considered: Low FAPAR values (left panel) and high FAPAR 
values (right panel).   
 
 Improvements regarding previous versions 
FAPAR v2.1 (and later versions) introduces two main changes regarding the previous version 
implemented in the VEGA 2.0 code (see SAF/LAND/UV/ VR_VEGA/2.1-2 for a detailed 
description):  
 

(1) FAPAR product is blinded over problematic areas with large BRDF errors. The user can 
identify easily these regions in the FAPAR v2.0 using the Error of FAPAR v2.0.  If 
ErrFAPAR v2.0 is larger than 0.4 then FAPAR v2.0 estimates are NOT reliable and 
should be discarded from any study. 

(2) ErrFAPAR is better estimated and more reliable than the ErrFAPAR v2.0. However, a linear 
relationship exists between v2.0 and v2.1 FAPAR uncertainties. Hence, the user can obtain 
the equivalent uncertainty of FAPAR v2.1 (and later versions) applying a factor of 0.75 to 
the ErrFAPAR v2.0, i.e.:   
 

ErrFAPAR = 0.75* ErrFAPAR v2.0     (35) 
 
Applying these two conditions to the FAPAR v2.0 product (available since September 2006 to 
February 2008) the user can get consistent temporal series of FAPAR products, as the main 
algorithm does not changes. A systematic decrease in the magnitude of the FAPAR v2.0 between 
2006 and 2007 observed in the south hemisphere should be explained due to changes in the AL2 
code (see SAF/LAND/UV/ VR_VEGA/2.1-2) 

 
 

2.7 Internal consistency between the LSA SAF Products 

In order to analyse the consistency among the suite of LSA SAF vegetation products (ALBEDO), we 
first evaluate how the energy absorbed by the ground below vegetation can be estimated from two 
independent SEVIRI products, fraction of PAR absorbed by vegetation (FAPAR) and bi-
hemispherical reflectance integrated over the photosynthetically active spectral region (BHRPAR). 
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From energy conservation, the fraction of PAR absorbed by the ground beneath the canopy is given 
by the formula (Diner et al., 2005): 

FGROUND = 1 – BHRPAR – FAPAR    (36) 

Figure 7 shows the relationship between MSG Daily LAI and FGROUND, as derived by combining 
two independent SEVIRI products (Eq. 36), for two different SEVIRI geographical regions, SAfr 
and Euro. The distribution can be well approximated by the exponential function, FGROUND= 
A·exp[−B·LAI], with A and B assumed to be constant. A similar relationship is observed for 
different periods of year 2007 and over different SEVIRI regions, which indicates a strong 
consistency between LAI and FGROUND at the resolution of SEVIRI products.  

 

 

 
Figure 7 - Joint probability density plots between FGROUND and MSG Daily LAI at several 
different periods of the year. Top figures correspond to the Euro SEVIRI zone, whereas bottom 
figures correspond to the SAfr SEVIRI region. 

 

These results can be interpreted as follows (Diner et al., 2005). The fraction of PAR absorbed by the 
ground is the downward PAR flux density, F, times the soil absorptance, 1−α, where α is the 
reflectance of the canopy background and F can be expressed via the Beer's law (Hu et al. 2007):  
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where r* is the probability that photon entering through the lower canopy boundary will be reflected 
back by the vegetated layer (Knyazikhin & Marshak, 2000; Wang et al., 2003), θs is the solar zenith 
angle, and G(θs) is the average extinction function (Ross, 1981). This analysis evidenced how the 
use of satellite fields derived from SEVIRI instrument has enabled a realistic partitioning of 
incoming solar radiation between the canopy and the ground below the canopy. Further details are 
available in a related document (SAF/LAND/UV/VEGA_VR/2.1). 

 
 

3 Product Description  
 

The LSA SAF SEVIRI/MSG chain processes separately the whole SEVIRI disk. The projection and 
spatial resolution correspond to the characteristics of Level 1.5 MSG/SEVIRI instrument data. 
Information on geo-location and data distribution is available at the LSA SAF web-site: 
http://landsaf.ipma.pt.  
 
The vegetation products (VEGA) are delivered at Daily (MDFVC, MDLAI, MDFAPAR) and ten-
day (MTFVC, MTLAI, MTFAPAR) time step based on the cloud-free BRDF k0-parameter (albedo 
product). Comments regarding the temporal characteristics and spatial coverage of the albedo 
products (details are given in SAF/LAND/MF/PUM_AL/1.5) therefore also apply to the vegetation 
products. VEGA ten-day differs of VEGA daily products only in the BRDF input. The daily albedo 
product is computed using an iterative scheme with a characteristic time scale of five days. By 
contrast, the 10-day albedo product is currently a classic composite expanding over a 30-day period.  
 
The v3.0 algorithm of MSG FAPAR product is identical to the one of the previous version (v2.1). 
However, the v3.0 version of the MSG FVC and LAI products has been developed to provide a more 
accurate identification of the vegetation and soil components. Therefore, the main limitation of the 
VEGA v2.1 is improved in the new version (v3.0), improving notably the consistency with 
Copernicus Global Land products based on SPOT/VEGETATION observations, mainly over sparse 
vegetation in southern regions in Africa and South America. Furthermore, a better filtering of pixels 
affecting by residual snow is applied.  
 
An example of the LSA SAF VEGA (FVC, LAI and FAPAR) v3.0 daily products is shown in 
Figure 8. The outputs present practically no missing data except for areas which are usually covered 
by snow or frequent cloud cover. Large uncertainties are generally found in areas where the BRDF 
reliability is poor.  
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Figure 8 – MSG Daily LAI (top), FVC (middle) and FAPAR (bottom) LSA SAF VEGA (version 
v3.0) product composition of the four LSA SAF geographical areas corresponding to the 17th of 
April 2014: products (left panels) and their respective error estimates (right panels). 
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Appendix B. Glossary 
AL:   Land Surface Albedo Product 
AVHRR:  Advanced Very High Resolution Radiometer 
BRDF:   Bi-directional Reflectance Distribution Function 
CYCLOPES: Carbon Cycle and Change in Land Observational Products from an Ensemble 

of Satellites 
ECMWF:  European Centre for Medium-Range Weather Forecast 
EPS:   EUMETSAT Polar System 
EUMETSAT:   European Meteorological Satellite Organisation 
FVC:   Fractional Vegetation Cover 
GLC:   Global Land Cover 
HDF:   Hierarchical Data Format 
LAI   Leaf Area Index 
NIR:   Near Infrared Radiation 
MIR:   Middle Infrared Radiation 
METEOSAT:   Geostationary Meteorological Satellite 
METOP:  Meteorological Operational polar satellites of EUMETSAT 
MERIS:  MEdium Resolution Image Spectrometer Instrument 
MISR:    Multi-Angle Imaging Spectra-Radiometer 
MF:   Météo-France 
MODIS:  Moderate-Resolution Imaging Spectro-Radiometer 
MSG:   Meteosat Second Generation 
MTR:   Mid Term Review 
NOAA:  National Oceanic and Atmospheric Administration (USA) 
NWP:   Numerical Weather Prediction 
POLDER:  POLarization and Directionality of Earth Reflectance 
PSF:   Point Spread Function 
SAF:   Satellite Application Facility 
SEVIRI:  Spinning Enhanced Visible and Infrared Imager 
SMA:   Spectral Mixture Analysis 
SPOT:   Système Probatoire d’Observation de la Terre 
SVPD:   Scientific Validation Plan Document 
TOC:   Top of Canopy 
TOA:   Top of Atmosphere 
URD:   User Requirements Document 


